Synthesis, characterization of polystyrene-phosphate films and their application as heterogeneous catalyst for Knoevenagel condensation in solvent-free conditions


Novel film catalysts of the polystyrene (Ps) and trimethyl phosphate (P) nanoparticles were synthesized on glass substrates by soft chemistry using doctor blade method. Subsequently, the prepared Ps–P film catalysts were characterized by various techniques, including fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), density (d), polarizing microscope (PM), X-ray diffraction (XRD) and thermal analysis. According to the results, the structure and morphology of film catalysts were confirmed by all analyses. The Ps–P films, as heterogeneous solid catalysts, have demonstrated strong activity for Knoevenagel condensation, producing alkenes of high purity. The recovered yields are excellent, up to 96% in solvent-free conditions at room temperature. Further, the film catalysts have showed high stability, good reusability (up to five times) while maintaining their efficiency and productivity.

Graphic Abstract

In the present study, the polystyrene/phosphate film catalysts were characterized and synthesized by soft chemistry method. These film catalysts were show an excellent catalytic activity for Knoevenagel condensation reaction. Further, they have demonstrated high yields, in solvent-free at room temperature, with a good reusability and high stability.

This is a preview of subscription content, access via your institution.

Figure 1
Scheme 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Scheme 2


  1. 1.

    Luo R, Li H, Du B, Zhou S and Zhu Y 2020 A simple strategy for high stretchable, flexible and conductive polymer films based on PEDOT: PSS-PDMS blends Org. Electron. 76 105451

    CAS  Google Scholar 

  2. 2.

    Karim A and Kumar S 2000 In Polymer surfaces, interfaces and thin films (World Scientific Publishing Company) p. 304

  3. 3.

    Yin X, Zhang Z, Wu M, Zhang J and Xu G 2018 Toward transparent composite films with selective solar spectral, flame retardant and thermal insulation functions Mater. Chem. Phys. 216 365

    CAS  Google Scholar 

  4. 4.

    Mohammed M I, El-sadek M S A and Yahia I S 2020 Optical linearity and bandgap analysis of RhB-doped PMMA/FTO polymeric composites films: a new designed optical system for laser power attenuation Opt. Laser Technol. 121 105823

    CAS  Google Scholar 

  5. 5.

    Bathula C, Khadtare S, Buruga K, Kadam A, Shrestha N K and Noh Y 2018 Selenophene based benzodithiophene polymers as potential candidates for optoelectronic applications Dye. Pigment. 149 639

    CAS  Google Scholar 

  6. 6.

    Rafique S, Abdullah S M, Badiei N, McGettrick J, Lai K T, Roslan N A, Lee H K H, Tsoi W C and Li L 2019 An insight into the air stability of the benchmark polymer: Fullerene photovoltaic films and devices: A comparative study Org. Electron. 76 105456

    Google Scholar 

  7. 7.

    Wang Z, Guo S, Zhang B and Zhu L 2019 Hydrophilic polymers of intrinsic microporosity as water transport nanochannels of highly permeable thin-film nanocomposite membranes used for antibiotic desalination J. Memb. Sci. 592 117375

    Google Scholar 

  8. 8.

    Ismayil K M M, Manaf O, Sujith A and Antony R 2019 Polymer thin films for chromatographic separation of plant pigments Mater. Lett. 252 321

    Google Scholar 

  9. 9.

    Ali F M, Ashraf I M and Alqahtani S M 2017 Promising Cu-doped polyvinyl alcohol films for optical and photoconductive applications Phys. B Condens. Matter 527 24

    CAS  Google Scholar 

  10. 10.

    Pangpaiboon N, Traiphol N, Promarak V and Traiphol R 2013 Retardation the dewetting dynamics of ultrathin polystyrene films using highly branched aromatic molecules as additives Thin Solid Films 548 323

    CAS  Google Scholar 

  11. 11.

    Oluwaleye O, Madhuku M, Mwakikunga B and Moloi S J 2019 Studies of lattice structure, electrical properties, thermal and chemical stability of cobalt ion implanted Indium Tin Oxide (ITO) thin films on polymer substrates Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 450 267

    CAS  Google Scholar 

  12. 12.

    Xue L and Han Y 2011 Pattern formation by dewetting of polymer thin film. Prog. Polym. Sci. 36 269

    CAS  Google Scholar 

  13. 13.

    Li Z, Zhong W, Ying L, Liu F, Li N, Huang F and Cao Y 2019 Morphology optimization via molecular weight tuning of donor polymer enables all-polymer solar cells with simultaneously improved performance and stability Nano Energy 64 103931

    CAS  Google Scholar 

  14. 14.

    Arinda P S, Santjojo D J D H, Masruroh M and Sakti S P 2019 Stability of polystyrene film surface wettability modified using oxygen plasma Mater. Today Proc. 13 24

    Google Scholar 

  15. 15.

    Mouhamad Y, Mokarian-Tabari P, Jones R A L and Geoghegan M 2019 Application of mean-field theory to the spin casting of polystyrene and poly (methyl methacrylate) blend films from toluene Polymer 178 121578

    CAS  Google Scholar 

  16. 16.

    Das S and Mahalingam H 2019 Dye degradation studies using immobilized pristine and waste polystyrene-TiO2/rGO/g-C3N4 nanocomposite photocatalytic film in a novel airlift reactor under solar light J. Environ. Chem. Eng. 7 103289

    CAS  Google Scholar 

  17. 17.

    Jalal N M, Jabur A R, Hamza M S and Allami S 2019 Preparation, microstructure and morphology of electrospun sulfonated polystyrene films for proton exchange membrane hydrogen fuel cell Energy Proc. 157 1494

    CAS  Google Scholar 

  18. 18.

    Sabet M, Soleimani H, Mohammadian E and Hosseini S 2019 Impact of inclusion graphene oxide nanosheets on polystyrene properties Int. J. Plas. Technol.1–9

  19. 19.

    Bhavsar S, Patel G B and Singh N L 2018 Investigation of optical properties of aluminium oxide doped polystyrene polymer nanocomposite films Phys. B Condens. Matter 533 12

    CAS  Google Scholar 

  20. 20.

    James J, Unni A B, Taleb K, Chapel J P, Kalarikkal N, Varghese S, Vignaud G and Grohens Y 2019 Surface engineering of polystyrene–cerium oxide nanocomposite thin films for refractive index enhancement Nano-Struct. Nano-Obj. 17 34

    CAS  Google Scholar 

  21. 21.

    Chouryal Y N, Sharma R K, Acharjee D Gnguly T, Pandey A and Ghosh P 2019 Influence of ionic liquids and concentration of red phosphorous on luminescent Cu3P nanocrystals J. Chem. Sci. 131 93

    Google Scholar 

  22. 22.

    El Aadad H, Rair D and Chahine A 2019 Synthesis and characterization of novel organic–inorganic hybrid nanocomposites of phosphate–benzimidazole by soft chemistry route in aqueous media SN Appl. Sci. 1 1474

    Google Scholar 

  23. 23.

    Mncwabe Z, Farahani M D and Friedrich H B 2019 Switching between oxidation types using molybdenum phosphate catalysts for paraffin activation using doped fe as surface acidity modifier and MoO x as an oxygen insertion tool Catal. Lett. 1

  24. 24.

    Omer K M, Mohammad N N and Baban S O 2018 Up-conversion fluorescence of phosphorous and nitrogen co-doped carbon quantum dots (CDs) coupled with weak LED light source for full-spectrum driven photocatalytic degradation via ZnO-CDs nanocomposites Catal. Lett. 148 2746

    CAS  Google Scholar 

  25. 25.

    Jadhav A L and Yadav G D 2019 Clean synthesis of benzylidenemalononitrile by Knoevenagel condensation of benzaldehyde and malononitrile: effect of combustion fuel on activity and selectivity of Ti-hydrotalcite and Zn-hydrotalcite catalysts J. Chem. Sci. 131 79

    Google Scholar 

  26. 26.

    Prajapati D, Lekhok K C, Sandhu J S and Ghosh A C 1996 Lithium bromide as a new catalyst for carbon–carbon bond formation in the solid state J. Chem. Soc. Perkin Trans. 9 959

    Google Scholar 

  27. 27.

    Brufola G, Fringuelli F, Piermatti O and Ferdinando P 1997 Efficient one-pot synthesis of 7-azacoumarins by Knoevenagel reaction using water as reaction medium Heterocycles. 45 1715

    CAS  Google Scholar 

  28. 28.

    Berni A, Mennig M and Schmidt H 2004 Doctor blade In Sol-gel technologies for glass producers and users p.89

  29. 29.

    Degallaix S and Ilschner B 2007 In Caractérisation expérimentale des matériaux I (TM volume 2) Propriétés physiques, thermiques et mécaniques in (ed. Presses Polytechniques Et Universitaires Romandes) p.420

  30. 30.

    Biémont É 2008 In Spectroscopie moléculaire, Structures moléculaires et analyse spectrale in (ed. De Boeck supérieur) p.320

  31. 31.

    Branan N and Wells T A 2007 Microorganism characterization using ATR–FTIR on an ultrathin polystyrene layer Vib. Spectrosc. 44 192

    CAS  Google Scholar 

  32. 32.

    Rair D, El aadad H, Jermoumi T and Chahine A 2018 Spectroscopic and thermal degradation studies of novel hybrid polymer based on sodium polyphosphate - polystyrene Med. J. Chem. 7 337

    CAS  Google Scholar 

  33. 33.

    Tekin N and Cebe M 2004 Solvents effect on infrared spectra of trimethyl phosphate in organic solvents Vib. Spectrosc. 36 129

    CAS  Google Scholar 

  34. 34.

    Reva I, Simao A and Fausto R 2005 Conformational properties of trimethyl phosphate monomer Chem. Phys. Lett. 406 126

    CAS  Google Scholar 

  35. 35.

    Mäkie P, Westin G, Persson P and Österlund L 2011 Adsorption of trimethyl phosphate on maghemite hematite, and goethite nanoparticles J. Phys. Chem. A 115 8948

    PubMed  Google Scholar 

  36. 36.

    Mastrantonio G and Della Védova C O 2001 Spectroscopic and conformational comparative study of trimethyl chalcogenphosphates J. Mol. Struct. 561 161

    CAS  Google Scholar 

  37. 37.

    Bevington J C and Huckerby T N 2006 Studies of end-groups in polystyrene using 1H NMR Eur. Polym. J. 42 1433

    CAS  Google Scholar 

  38. 38.

    Streck R and Barnes A J 1999 Solvent effects on infrared, 13C and 31P NMR spectra of trimethyl phosphate: Part 1. Single solvent systems Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 55 1049

    Google Scholar 

  39. 39.

    Meng Q, Doetschman D C, Rizos A K, Lee M H, Schulte J T, Spyros A and Kanyi C W 2011 Adsorption of organophosphates into microporous and mesoporous NaX zeolites and subsequent chemistry Environ. Sci. Technol. 45 3000

    CAS  PubMed  Google Scholar 

  40. 40.

    OCDE 2012 Ligne directrice de l’OCDE pour les essais de produits chimiques. Daphnia magna, essai de reproduction OECD Environ. Heal. Saf. Publ. p.28

  41. 41.

    Belitskus D 1993 In Fiber and whisker reinforced ceramics for structural applications. in (ed. CRC Press) p.11

  42. 42.

    Alekseeva O V, Bagrovskaya N A and Noskov A V 2018 Effect of C60 filling on structure and properties of composite films based on polystyrene Arab. J. Chem. 11 1160

    CAS  Google Scholar 

  43. 43.

    Botan R, Nogueira T R, Lona L M F and Wypych F 2011 Synthesis and characterization of exfoliated polystyrene-layered double hydroxide nanocomposites via in situ polymerization. Polímeros-Ciência e Tecnol. 21 34

    CAS  Google Scholar 

  44. 44.

    Bhadra J, Al-Thani N J, Madi N K and Al-Maadeed M A 2013 Preparation and characterization of chemically synthesized polyaniline–polystyrene blends as a carbon dioxide gas sensor Synth. Met. 181 27

    CAS  Google Scholar 

  45. 45.

    N’Dri K, Houphouet-Boigny D and Jumas J C 2012 Study of first sharp diffraction peak in As2S3 glasses by X-ray powder diffraction method J. Non-Oxide Glas. 3 29

    Google Scholar 

  46. 46.

    Ahmetli G, Cerit A and Kocaman S 2013 Synthesis and characterization of UV-crosslinkable unsaturated ketone group containing polystyrene films Prog. Org. Coat. 76 884

    CAS  Google Scholar 

  47. 47.

    Faravelli T, Bozzano G, Colombo M, Ranzi E and Dente M 2003 Kinetic modeling of the thermal degradation of polyethylene and polystyrene mixtures J. Anal. Appl. Pyrolysis 70 761

    CAS  Google Scholar 

  48. 48.

    El Watik L, Antonetti P, Claire Y, Zineddine H, Kaloustian J, Rossi C and Perichaud A. 1998 Etude de la dégradation thermique du polystyrène choc ignifugé J. Therm. Anal. Calorim. 53 297

    Google Scholar 

  49. 49.

    Benzekri Z, El Mejdoubi K, Boukhris S, Sallek B, Lakhrissi B and Souizi A 2016 Dicalcium phosphate dehydrate DCPD as a highly efficient and reusable catalyst for Knoevenagel condensation Synth. Commun. 46 442

    CAS  Google Scholar 

  50. 50.

    Dhakshinamoorthy A, Heidenreich N, Lenzen D and Stock N 2017 Knoevenagel condensation reaction catalysed by Al-MOFs with CAU-1 and CAU-10-type structures Cryst. Eng. Comm. 19 4187

    CAS  Google Scholar 

  51. 51.

    Zhai Z W, Yang S H, Lv Y R, Du C X, Li L K and Zang S Q 2019 Amino functionalized Zn/Cd-metal–organic frameworks for selective CO2 adsorption and Knoevenagel condensation reactions Dalt. Trans. 48 4007

    CAS  Google Scholar 

  52. 52.

    Rong N, Qiu T, Qian R, Lü L, Huang X, Ma Z and Cui C 2017 Three pyrazole-3-carboxylic acid complexes as efficient solvent-free heterogeneous catalysts for CC bond formation Inorg. Chem. Commun. 86 98

    CAS  Google Scholar 

  53. 53.

    Madasamy K, Kumaraguru S, Sankar V, Mannathan S and Kathiresan M A 2019 Zn based metal organic framework as a heterogeneous catalyst for C–C bond formation reactions New J. Chem. 43 3793

    CAS  Google Scholar 

  54. 54.

    Sakthivel B and Dhakshinamoorthy A 2017 Chitosan as a reusable solid base catalyst for Knoevenagel condensation reaction J. Colloid Interface Sci. 485 75

    CAS  PubMed  Google Scholar 

  55. 55.

    Jiang W, Yang J, Liu Y-Y, Song S-Y and Ma J-F 2017 A stable porphyrin-based porous mog metal–organic framework as an efficient solvent-free catalyst for C–C bond formation Inorg. Chem. 56 3036

    CAS  PubMed  Google Scholar 

  56. 56.

    Rosati O, Lanari D, Scavo R, Persia D, Marmottini F, Nocchetti M, Curini M and Piermatti O 2018 Zirconium potassium phosphate methyl and/or phenyl phosphonates as heterogeneous catalysts for Knoevenagel condensation under solvent free conditions Microporous Mesoporous Mater. 268 251

    CAS  Google Scholar 

  57. 57.

    Khoshnavazi R, Bahrami L and Rezaei M 2017 Heteropolytungstostannate as a homo-and heterogeneous catalyst for Knoevenagel condensations, selective oxidation of sulfides and oxidative amination of aldehydes RSC Adv. 7 45495

    CAS  Google Scholar 

  58. 58.

    Jlassi R, Ribeiro A P, Tiago G A, Wang J, Krawczyk M S, Martins L M D R S, Naili H, Pombeiro A J L and Rekik W 2018 Elementary and efficient catalyst process for the Knoevenagel condensation of araldehydes with arylmethylidene malononitrile Inorg. Chim. Acta 471 76

    CAS  Google Scholar 

  59. 59.

    Arghan M, Koukabi N and Kolvari E 2019 Polyvinyl amine as a modified and grafted shell for Fe3O4 nanoparticles: As a strong solid base catalyst for the synthesis of various dihydropyrano [2, 3-c] pyrazole derivatives and the Knoevenagel condensation J. Saudi Chem. Soc. 23 150

    CAS  Google Scholar 

  60. 60.

    Ouaddari H, Beqqour D, Bennazha J, El Amrani I E, Albizane A, Solhy A and Varma R S 2018 Natural Moroccan clays: Comparative study of their application as recyclable catalysts in Knoevenagel condensation Sustain. Chem. Pharm. 10 1

    Google Scholar 

Download references


We thank Dr Mrabet Souad for their assistance in the polarizing microscope analysis.

Author information



Corresponding authors


Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 632 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

EL AADAD, H., BENZEKRI, Z., BOUKHRIS, S. et al. Synthesis, characterization of polystyrene-phosphate films and their application as heterogeneous catalyst for Knoevenagel condensation in solvent-free conditions. J Chem Sci 132, 87 (2020).

Download citation


  • Film catalyst
  • doctor blade
  • heterogeneous catalyst
  • Knoevenagel condensation
  • solvent-free