Skip to main content
Log in

Sensitive determination of kojic acid in tomato sauces using Ni–Fe layered double hydroxide synthesized through Fe-MIL-88 metal-organic framework templated route

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A sacrificial template, Fe-MIL-88 is used to synthesize Ni–Fe layered double hydroxide (Ni–Fe LDH). The metal-organic framework (Fe-MIL-88) is synthesized from the precursors, ferric nitrate and terephthalic acid. Electrocatalytic oxidation of kojic acid (KA) is realized by Ni–Fe LDH film which is coated on a glassy carbon electrode (GC). Under the optimized conditions, amperometry measurements at the Ni–Fe LDH coated GC as a function of KA concentration demonstrates a sensitive determination of KA. The calibration curve shows two linear ranges, 1–1500 µM and 1500–4500 µM for the KA determination. Detection limit for the KA determination is estimated as 0.73 µM. The practical applicability of this method is confirmed by measuring the KA concentration present in various real samples.

Graphic abstract

A new sensor for the determination kojic acid is developed based on Ni–Fe layered double hydroxide which is synthesized through the Fe-MIL-88 templated route. Further, the synthesized material is used for the determination of kojic acid present in different brands of commercial tomato sauces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Chen H, Mousty C, Cosnier S, Silveira C, Moura J J G and Almeida M G 2007 Highly sensitive nitrite biosensor based on the electrical wiring of nitrite reductase by [ZnCr-AQS] LDH Electrochem. Commun. 9 2240

    Article  CAS  Google Scholar 

  2. Kameyama T, Okazaki K I, Takagi K and Torimoto T 2009 Stacked-structure-dependent photoelectrochemical properties of CdS nanoparticle/layered double hydroxide (LDH) nanosheet multilayer films prepared by layer-by-layer accumulation Phys. Chem. Chem. Phys. 11 5369

    Article  CAS  Google Scholar 

  3. Zhao Y, He S, Wei M, Evans D G and Duan X 2010 Hierarchical films of layered double hydroxides by using a sol-gel process and their high adaptability in water treatment Chem. Commun. 46 3031

    Article  CAS  Google Scholar 

  4. Radha A, Kamath P V and Shivakumar C 2007 Conservation of order, disorder and crystallinity during anion-exchange reactions among layered double hydroxides (LDHs) of Zn with Al J. Phys. Chem. B 111 3411

    Article  CAS  Google Scholar 

  5. Dixit M, Jayashree R S, Kamath P V, Shukla A K, Kumar V G and Munichandraiah N 1999 Electrochemically impregnated aluminum stabilized alpha nickel hydroxide batteries Electrochem. Solid State Lett. 2 170

    Article  CAS  Google Scholar 

  6. Zadeh H A, Kohansal S and Sadeghi G H 2011 Selective solid-phase extraction and spectrofluorometric determination of salicylic acid in pharmaceutical and biological samples Talanta 84 368

    Article  Google Scholar 

  7. Shan D, Wang Y N, Zhu M J, Xue H G, Cosnier S and Wang C Y 2009 Development of a high analytical performance-xanthine biosensor based on layered double hydroxides modified-electrode and investigation of the inhibitory effect by allopurinol Biosens. Bioelectron. 24 1171

    Article  CAS  Google Scholar 

  8. Qiu J B 1995 Anionic clay modified electrodes: electrochemical activity of nickel(II) sites in layered double hydroxide films. J. Electroanal. Chem. 395 159

    Article  Google Scholar 

  9. Reichle W T 1986 Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite) Solid State Ion. 22 135

    Article  CAS  Google Scholar 

  10. Yao L, Wei D, Yan D and Hu C 2015, ZnCr Layered double hydroxide (LDH) nanosheets assisted formation of hierarchical flower-like CdZnS@LDH microstructures with improved visible-light-Driven H2 production Chem. Asian J. 10 630

    Article  CAS  Google Scholar 

  11. Tonelli D, Scavetta E and Giorgetti M 2013 Layered-double-hydroxide-modified electrodes: electroanalytical applications Anal. Bioanal. Chem. 405 603

    Article  CAS  Google Scholar 

  12. Wang Q and O’Hare D 2012 Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets Chem. Rev. 112 4124

    Article  CAS  Google Scholar 

  13. Jiang Z, Li Z, Qin Z, Sun H, Jiao X and Chen D 2013 LDH nanocages synthesized with MOF templates and their high performance as supercapacitors Nanoscale 5 11770

    Article  CAS  Google Scholar 

  14. Yadav D K, Ganesan V, Sonkar P K and Gupta R 2017 Templated synthesis of nickel@iron layered double hydroxide for enhanced electrocatalytic water oxidation: towards the development of non-precious-metal catalysts ChemElectroChem 4 3134

    Article  CAS  Google Scholar 

  15. Buleandra M, Rabinca A A, Tache F, Moldovan Z, Stamatin I, Mihailciuc C and Ciucu A A 2017 Rapid voltammetric detection of kojic acid at a multi-walled carbon nanotubes screen-printed electrode Sens. Actuat. B-Chem. 241 406

    Article  CAS  Google Scholar 

  16. Ma X and Chao M 2014 Study on the electrochemical properties of kojic acid at a poly(glutamic acid)-modified glassy carbon electrode and its analytical application Food Anal. Methods 7 1458

    Article  Google Scholar 

  17. Sheikhshoaie M, Sheikhshoaie I and Ranjbar M 2017 Analysis of kojic acid in food samples uses an amplified electrochemical sensor employing V2O5 nanoparticle and room temperature ionic liquid J. Mol. Liq. 231 597

    Article  CAS  Google Scholar 

  18. Gao Z, Su R, Qi W, Wang L and He Z 2014 Copper nanocluster-based fluorescent sensors for sensitive and selective detection of kojic acid in food stuff Sens. Actuat. B-Chem. 195 359

    Article  CAS  Google Scholar 

  19. Chusiri Y, Wongpoomchai R, Kakehashi A, Wei M, Wanibuchi H, Vinitketkumnuan U and Fukushima S 2011 Non-genotoxic mode of action and possible threshold for hepatocarcinogenicity of kojic acid in F344 rats Food Chem. Toxicol. 49 471

    Article  CAS  Google Scholar 

  20. Blumenthal C Z 2004 Production of toxic metabolites in Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei: justification of mycotoxin testing in food grade enzyme preparations derived from the three fungi Toxicol. Pharmacol. 39 214

    CAS  Google Scholar 

  21. Shih Y 2001 Simultaneous determination of magnesium l-ascorbyl-2-phosphate and kojic acid cosmetic bleaching products by using a microbore column and ion-pair liquid chromatography J. AOAC Int. 84 1045

    Article  CAS  Google Scholar 

  22. Lin Y H, Yang Y H and Wu S M 2007 Experimental design and capillary electrophoresis for simultaneous analysis of arbutin, kojic acid and hydroquinone in cosmetics J. Pharm. Biomed. Anal. 44 279

    Article  CAS  Google Scholar 

  23. Song P, Xiang Y, Xing H, Zhou Z, Tong A and Lu Y 2012 Label-free catalytic and molecular beacon containing an abasic site for sensitive fluorescent detection of small inorganic and organic molecules Anal. Chem. 84 2916

    Article  CAS  Google Scholar 

  24. Vachalkova A, Bransova J, Brtko J, Uher M and Novotny L 1996 Polarographic behavior of kojic acid and its derivatives, determination of potential carcinogenicity and correlation of these properties with their other attributes Neoplasma 43 265

    CAS  PubMed  Google Scholar 

  25. Ziyatdinova G K, Budnikov G K and Pogoreltsev V I 2004 Electrochemical determination of lipoic acid J. Anal. Chem. 59 324

    Google Scholar 

  26. Yashin Y I and Yashin A Y 2004 Analysis of food products and beverages using high-performance liquid chromatography and ion chromatography with electrochemical detectors J. Anal. Chem. 59 1237

    Article  Google Scholar 

  27. Mohammadizadeh N, Mohammadi S Z and Kaykhaii M 2018 Carbon paste electrode modified with ZrO2 nanoparticles and ionic liquid for sensing of dopamine in the presence of uric acid J. Anal. Chem. 73 685

    Article  CAS  Google Scholar 

  28. Wu Y, Luo H and Wang H 2014 Synthesis of iron(III)-based metal–organic framework/graphene oxide composites with increased photocatalytic performance for dye degradation RSC Adv. 4 40435

    Article  CAS  Google Scholar 

  29. Shi S, Fang Z and Ni J 2005 Electrochemical impedance spectroscopy of marmatite-carbon paste electrode in the presence and absence of Acidithiobacillus ferrooxidans Electrochem. Commun. 7 1177

    Article  CAS  Google Scholar 

  30. Li B Y, Hasin P and Wu Y 2010 NixCo3−xO4 nanowire arrays for electrocatalytic oxygen evolution Adv. Mater. 22 1926

    Article  CAS  Google Scholar 

  31. Rastogi P K, Ganesan V and Krishnamoorthi S 2014 Palladium nanoparticles incorporated polymer-silica nanocomposite based electrochemical sensing platform for nitrobenzene detection Electrochim. Acta 147 442

    Article  CAS  Google Scholar 

  32. Yang Z, Yin Z and Chen F 2011 A novel kojic acid amperometric sensor based on hollow CuO/Fe2O3 hybrid microspheres immobilized in chitosan matrix Electrochim. Acta 56 1089

    Article  CAS  Google Scholar 

  33. Liu J, Zhou D, Liu X, Wu K and Wan C 2009 Determination of kojic acid based on the interface enhancement effects of carbon nanotube/alizarin red S modified electrode Colloids Surf. B 70 20

    Article  CAS  Google Scholar 

  34. Wang L, Qi W, Su R and He Z 2014 Sensitive and efficient electrochemical determination of kojic acid in foodstuffs based on graphene-Pt nanocomposite-modified electrode Food Anal. Methods 7 109

    Article  Google Scholar 

  35. Ma X and Chao M 2014 Study on the electrochemical properties of kojic acid at a poly(glutamic acid)-modified glassy carbon electrode and its analytical application Food Anal. Methods 7 1458

    Article  Google Scholar 

  36. Filho L C S F, Brownson D A C, Filho O F and Banks C E 2013 Exploring the origins of the apparent “electrocatalytic” oxidation of kojic acid at graphene modified electrodes Analyst 138 4436

    Article  Google Scholar 

  37. Wang Y, Zhang D and Wu J 2012 Electrocatalytic oxidation of kojic acid at a reduced graphene sheet modified glassy carbon electrode J. Electroanal. Chem. 664 111

    Article  CAS  Google Scholar 

  38. Hai B and Zou Y 2015 Carbon cloth supported NiAl-layered double hydroxides for flexible application and highly sensitive electrochemical sensors Sens. Actuat. B-Chem. 208 143

    Article  CAS  Google Scholar 

  39. Bastidas F, Urzua U and Vicuna R 2002 Oxidation of kojic acid catalyzed by manganese peroxidase from Ceriporiopsis subvermispora in the absence of hydrogen peroxide Appl. Biochem. Biotechnol. 101 31

    Article  CAS  Google Scholar 

  40. Yang X and Zhang H 2007 Sensitive determination of kojic acid in foodstuffs using PVP (polyvinylpyrrolidone) modified acetylene black paste electrode Food Chem. 102 1223

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Generous financial support from DST-ASEAN (IMRC/AISTDF/R&D/P-16/2018) and DST (SR/NM/NS-2012/2013(G)), New Delhi is gratefully acknowledged. DKY acknowledges UGC, New Delhi for Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vellaichamy Ganesan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 375 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, D.K., Ganesan, V., Gupta, R. et al. Sensitive determination of kojic acid in tomato sauces using Ni–Fe layered double hydroxide synthesized through Fe-MIL-88 metal-organic framework templated route. J Chem Sci 132, 69 (2020). https://doi.org/10.1007/s12039-020-01777-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01777-2

Keywords

Navigation