Efficient and selective catalytic N-Alkylation of pyrimidine by ammonium Sulfate@Hydro-thermal carbone under eco-friendly conditions


An efficient and inexpensive method for the N-alkylation of pyrimidines using ammonium sulfate coated Hydro-Thermal-Carbone (HTC) (AS@HTC) as reused heterogeneous catalyst was developed. The catalyst was characterized by several analytical techniques such as SEM, XRD, and FTIR. The effect of various parameters was studied including catalyst loading, mole ratio, to achieve excellent selectivity and yields in 80–90%. Significantly, the present protocol offers the use of an inexpensive and environmentally friendly catalyst and simple workup. The simplicity of the procedure, excellent yield of the products, and the recyclability of the catalyst are the main advantages of this method.

Graphic Abstract

Ammonium sulfate coated Hydro-Thermal-Carbone (HTC) (AS@HTC); an efficient and reused heterogeneous catalyst of the N-alkylation of pyrimidines was developed. Excellent selectivity and yields (80–90%) toward N1-alkylpyrimidines were achieved. Significantly, the present protocol offers the use of an inexpensive and environmentally friendly catalyst and simple workup.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2


  1. 1.

    Salehi P, Dabiri M, Zolfigol M A and Fard M A B 2003 Silica sulfuric acid as an efficient and reusable reagent for crossed-aldol condensation of ketones with aromatic aldehydes under solvent-free conditions Tetrahedron Lett. 44 2889

    CAS  Google Scholar 

  2. 2.

    Moghaddas M, Davoodnia A, Heravi M M and Tavakoli-Hoseini N 2012 Sulfonated Carbon Catalyzed Biginelli Reaction for One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and -thiones Chin. J. Catal.33 706

    CAS  Google Scholar 

  3. 3.

    Deshmane C A, Wright M W, Lachgar A, Rohlfing M, Liu Z, Le J and Hanson B E 2013 A comparative study of solid carbon acid catalysts for the esterification of free fatty acids for biodiesel production. Evidence for the leaching of colloidal carbon Biores. Tech.147 597

  4. 4.

    Qi X and Liu N Lian Y 2015 Carbonaceous microspheres prepared by hydrothermal carbonization of glucose for direct use in catalytic dehydration of fructose RSC Adv.5 17526

  5. 5.

    Liu T, Li Z, Li W, Shi C and Wang Y 2013 Preparation and characterization of biomass carbon-based solid acid catalyst for the esterification of oleic acid with methanol Biores. Tech.133 618

    CAS  Google Scholar 

  6. 6.

    Climent M J, Corma A, Iborra S and Sabater J M 2014 Heterogeneous Catalysis for Tandem Reactions ACS Catal.4 870

    CAS  Google Scholar 

  7. 7.

    Fraile J M and Saavedra C J 2017 Application of Heterogeneous Catalysts in the First Steps of the Oseltamivir Synthesis Catalysts7 393

    Google Scholar 

  8. 8.

    Akhil V N and Ganapati D Y 2018 Cu2O nanoparticles supported hydrothermal carbon microspheres as catalyst for propargylamine synthesis Mol. Cat.451 209

    Google Scholar 

  9. 9.

    Filoklis D P, Maham T, Sam C and Maria-Magdalena T 2014 Esterification of levulinic acid into ethyl levulinate catalysed by sulfonated hydrothermal carbons Chin. J. Catal. 35 929

    Google Scholar 

  10. 10.

    Doke D S, Umbarkar S B, Gawande M B, Zboril R and Biradar A V 2017 Environmentally Benign Bioderived Carbon Microspheres-Supported Molybdena Nanoparticles as Catalyst for the Epoxidation Reaction Chem. Eng.5 904

    CAS  Google Scholar 

  11. 11.

    Reddy B M and Patil M K 2009 Organic Syntheses and Transformations Catalyzed by Sulfated Zirconia Chem. Rev.109 2185

    CAS  PubMed  Google Scholar 

  12. 12.

    Venkatesh K R, Hu J, Dogan C, Tierney J W and Wender I 1995 Sulfated metal oxides and related solid acids: comparison of protonic acid strengths Energy Fuels9 888

    CAS  Google Scholar 

  13. 13.

    Drago R S and Kob N 1997 Acidity and reactivity of sulfated zirconia and metal-doped sulfated zirconia J. Phys. Chem. B101 3360

    CAS  Google Scholar 

  14. 14.

    Niedballa U and Vorbrueggen H 1976 Synthesis of nucleosides 17. A general synthesis of N-glycosides. 6. On the mechanism of the stannic chloride catalyzed silyl Hilbert-Johnson reaction J. Org. Chem.41 2084

  15. 15.

    Vorbruggen H, Krolikiewicz K and Bennua B 1981 Nucleoside syntheses, XXII1) Nucleoside synthesis with trimethylsilyl triflate and perchlorate as catalysts Chem. Ber.114 1234

    Google Scholar 

  16. 16.

    Vorbruggen H and Ruh-Polenz C 2000 Synthesis of Nucleosides Org. React.55 1

    CAS  Google Scholar 

  17. 17.

    Chengyuan L, Weihui J, Shunjun D, Han S and Gennian M 2017 Effective Synthesis of Nucleosides Utilizing O-Acetyl-Glycosyl Chlorides as Glycosyl Donors in the Absence of Catalyst: Mechanism Revision and Application to Silyl-Hilbert-Johnson Reaction Molecules22 84

    Google Scholar 

  18. 18.

    Bennua-Skalmowski B, Krolikiewicz K and Vorbruggen H 1995 A new simple nucleoside synthesis Tetrahedron. Lett. 36 7845

    CAS  Google Scholar 

  19. 19.

    Niedballa U and Vorbruggen H 1970 A General Synthesis of Pyrimidine Nucleosides Angew. Chem Int. Ed. Engl.9 461

    CAS  PubMed  Google Scholar 

  20. 20.

    Robins M J and Hatfield P W 1982 Nucleic acid related compounds. 37. Convenient and high-yield syntheses of N-[(2-hydroxyethoxy)methyl] heterocycles as “acyclic nucleoside” analogues Can. J. Chem. 60 547

  21. 21.

    El Mansouri A, Zahouily M and Lazrek H B 2019 HMDS/KI a simple, a cheap and efficient catalyst for the one-pot synthesis of N-functionalized pyrimidines Synth. Commun.49 1802 and references cited therein

    CAS  Google Scholar 

  22. 22.

    Babkova D A, Chizhovb A O, Khandazhinskayac A L, Coronad A, Espositod F, Tramontanod E, Seley-Radtke K L and Novikova M S 2015 An Efficient Route to Novel Uracil-Based Drug-Like Molecules Synthesis47 1413 and references cited therein

    Google Scholar 

  23. 23.

    Manfredini S, Baraldi P G, Bazzanini R, Guarneri M and Simoni D 1994 A new direct glycosylation of pyrimidine, pyrazole, imidazole and purine heterocycles via their N-tetrahydropyranyl (THP) derivatives J. Chem. Soc., Chem. Commun.5 583

  24. 24.

    Robins M J, Hatfield P W 1982 Nucleic acid related compounds 37 Convenient and high-yield syntheses of N-[2 hydroxyethoxy) methyl] heterocycles as acylic nucleoside analogues Can. J. Chem. 60 547

    CAS  Google Scholar 

  25. 25.

    El Ashry E S H, El Kilany Y 1997 Acyclonucleosides: Part 1 Seco- Nucleosides Adv. Heterocycl. Chem.68 1

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    El Ashry E S H, El Kilany Y 1997 Acyclonucleosides Part III tri-, tetra-, and pentaseco-Nucleosides Adv. Heterocycl. Chem. 69 129

    Google Scholar 

  27. 27.

    Duehohm K L, Egholm M, Behrens C, Christensen L, Hansen H F, Vulpius T and Peterson K H 1994 Synthesis of peptide nucleic acid monomers containing the four natural nucleobases: thymine, cytosine, adenine, and guanine and their oligomerization J. Org. Chem. 59 5767

    Google Scholar 

  28. 28.

    Zhou P, Dragulescu-Andrasi A, Bhattacharya B, O’Keefe H, Vatta P, Hyldig-Nielsenb J J and Ly D H 2006 Synthesis of cell-permeable peptide nucleic acids and characterization of their hybridization and uptake properties Bioorg. Med. Chem. Lett.16 4931

    CAS  PubMed  Google Scholar 

  29. 29.

    Singh H, Aggarwal P and Kumar S 1990 A Facile Synthesis of 1-Monosubstituted and Unsymmetrically 1,3-Disubstituted Uracils Synthesis06 520

  30. 30.

    Lazrek H B, Taourirte M, Oulih T, Barascut J L, Imbach J L, Pannecouque C, Witvrouw M and De Clercq E 2001 Synthesis and anti-HIV activity of new modified 1,2,3-triazole acyclonucleosides Nucleos. Nucleot. Nucleic. Acids20 1949

    CAS  Google Scholar 

  31. 31.

    El-Zayata W A, El-Sayedb W A and Abdel-Rahmana AA-H 2009 Anti-Hepatitis B Virus Activity of New Pyrimidine and Adenine Peptide Nucleic Acid Analogues Naturforsch. Z.64c 6

  32. 32.

    Ali O M, Amer H H and Abdel-Rahman A A H 2007 Synthesis and antiviral evaluation of sugar uracil-1-ylmethylhydrazones and their oxadiazoline derivatives Synthesis28 2823

  33. 33.

    Uhlmann E, Peyman A, Breipohl G and Will D W 1998 PNA: Synthetic Polyamide Nucleic Acids with Unusual Binding Properties Angew. Chem. Int. Ed. 37 2796

    CAS  Google Scholar 

  34. 34.

    Alahiane A, Taourirte M, Rochdi A, Redwane N, Sebti S, Engels J W and Lazrek H B 2003 Building blocks for polyamide nucleic acids: Facile synthesis using potassium fluoride doped natural phosphate as basic catalyst Nucleos. Nucleot. Nucleic. Acids22 109

    CAS  Google Scholar 

  35. 35.

    Krstulović L, Ismaili H, Bajić M, Višnjevac A, Glavaš-Obrovac L and Žinić B 2012 Synthesis of Novel Aliphatic N-sulfonylamidino Thymine Derivatives by Cu(I)-catalyzed Three-component Coupling Reaction Croat. Chem. Acta85 525

    Google Scholar 

  36. 36.

    Priego E M, Camarasa M J and Pérez-Pérez M J 2001 Efficient Synthesis of N-3-Substituted 6-Aminouracil Derivatives via N 6-[(Dimethylamino)methylene] Protection Synthesis3 478

  37. 37.

    Hovinen J 1997 Selective N3- and 5′-O-Alkylation of 2′,3′-O-isopropylideneuridine with methyl iodide Helv. Chim. Acta80 851

    CAS  Google Scholar 

  38. 38.

    Bram G, Decodts G, Bensaid Y, Farnoux C C, Galons H and Miocque M 1985 N-Alkylation of Pyrimidine and Purine Derivatives (Uracils, Xanthines, Adenine) using Solid/Liquid Phase-Transfer Catalysis without Solvent Synthesis5 543

  39. 39.

    Elayadi H, Mesnaoui M, Korba B E, Smietana M, Vasseur J J, Secrist J A and Lazrek H B 2012 Preparation of 1,4-disubstituted-1,2,3-triazolo ribonucleosides by Na2CuP2O7 catalyzed azide-alkyne 1,3-dipolar cycloaddition ARKIVOC.viii 76

  40. 40.

    Elayadi H, Smietana M, Vasseur J J, Balzarini J and Lazrek H B 2013 Synthesis of 1,2,3-Triazolyl Nucleoside Analogs as Potential Anti-Influenza A (H3N2 Subtype) Virus Agents Arch. Pharm. Chem. Life. Sci. 347 134

    Google Scholar 

  41. 41.

    Elayadi H, Ait Ali M, Mehdi A and Lazrek H B 2012 Nanoscrystalline CuO: Synthesis and application as an efficient catalyst for the preparation of 1,2,3-triazole acyclic nucleosides via 1,3-dipolar cycloaddition Catal. Commun.26 155

    CAS  Google Scholar 

  42. 42.

    Berrocal T, Mesa J L, Larrea E and Arrieta J M 2014 Crystal structure of (NH4)2[FeII 5(HPO3)6], a new open-framework phosphite Acta Crystallogr. Sect. EE70 309

    Google Scholar 

  43. 43.

    Contreras C A, Sugita S and Ramos E 2006 Preparation of sodium aluminate from basic aluminum sulfate Adv. Tech. Mater. Mater. Proc. J.8 122

    CAS  Google Scholar 

  44. 44.

    Wang X and Pan Z 2017 Chemical changes and reaction mechanism of hardened cement paste–(NH4)2SO4–H2O system Constr. Build. Mater. 152 434

    CAS  Google Scholar 

  45. 45.

    Zhang B, Ren J, Liu X, Guo Y, Guo Y l, Lu G Z and Wang Y 2010 Novel sulfonated carbonaceous materials from p-toluenesulfonic acid/glucose as a high-performance solid-acid catalyst Cat. Com.11 629

    CAS  Google Scholar 

  46. 46.

    Novikov M S and Ozerov A A 2005 The Silyl Method for the Synthesis of 1[-2(Phenoxy)ethyl]uracils Chem. Heterocycl. Compd.41 905

    CAS  Google Scholar 

  47. 47.

    Kelley J L, Baker B R 1982 Irreversible enzyme inhibitors. 202. Candidate active-site-directed irreversible inhibitors of 5-fluoro-2’-deoxyuridine phosphorylase from Walker 256 rat tumor derived from 1-benzyl-5-(3-ethoxybenzyl)uracil J. Med. Chem. 25 600

  48. 48.

    Zhang Q J, Sun J S, Zhu Y G, Zhang F Y and Yu B 2011 An Efficient Approach to the Synthesis of Nucleosides: Gold(I)-Catalyzed N-Glycosylation of Pyrimidines and Purines with Glycosyl ortho-Alkynyl Benzoates Angew. Chem. Int. Ed.50 4933

    CAS  Google Scholar 

  49. 49.

    Framski G, Gdaniec Z, Gdaniec M and Boryski J 2006 A reinvestigated mechanism of ribosylation of adenine under silylating conditions Tetrahedron62 10123

    CAS  Google Scholar 

  50. 50.

    Ganesh A 2013 Potential biological activity of 1,4-sustituted1h-[1,2,3] triazoles Int. J. Chem. Sci. 11 573

    CAS  Google Scholar 

  51. 51.

    Amblard F, Cho J H, Schinazi RF 2009 Cu(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry Chem. Rev.109 4207

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Kaoukabi H, Kabri Y, Curti C, Taourirte M, Rodriguez-Ubis J C, Snoeck R, Andrei G, Vanelle P and Lazrek H.B 2018 Dihydropyrimidinone/1,2,3-triazole hybrid molecules: Synthesis and anti-varicella-zoster virus (VZV) evaluation Eur. J. Med. Chem.155 772

    CAS  PubMed  Google Scholar 

  53. 53.

    Trakossas S, Coutouli-Argyropoulou E and Hadjipavlou-Litina D J 2011 Synthesis of modified triazole nucleosides possessing one or two base moieties via a click chemistry approach Tetrahedron Lett.52 1673

    CAS  Google Scholar 

  54. 54.

    Elayadi H, Smietana M, Pannecouque C, Leyssen P, Neyts J, Vasseur J-J and Lazrek H B 2010 Straightforward synthesis of triazoloacyclonucleotide phosphonates as potential HCV inhibitors Bioorg. Med. Chem. Lett.20 7365

    CAS  PubMed  Google Scholar 

  55. 55.

    Głowacka I E, Balzarini J and Wróblewski A E 2012 Design, synthesis, antiviral, and cytotoxic evaluation of novel phosphonylated 1,2,3-triazoles as acyclic nucleotide analogues Nucleos. Nucleot. Nucleic Acids31 293

    Google Scholar 

Download references


The authors would like to acknowledge Prof. Mahmoud H. el Kouni (Department of Pharmacology & Toxicology, the University of Alabama at Birmingham, USA) for helpful discussions. We also thank Professor Marcus Wright (Wake Forest University, North Carolina, USA) for technical assistance and the technical staff of the CAC (Centre of Analysis and Characterization) University Cadi Ayyad for running the spectroscopic analysis.

Author information



Corresponding authors


Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1474 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

BELKHARCHACH, S., IGHACHANE, H., LACHGAR, A. et al. Efficient and selective catalytic N-Alkylation of pyrimidine by ammonium Sulfate@Hydro-thermal carbone under eco-friendly conditions. J Chem Sci 132, 78 (2020). https://doi.org/10.1007/s12039-020-01776-3

Download citation


  • Heterogeneous catalysis
  • AS@HTC
  • N-alkylation
  • pyrimidines