Skip to main content

Advertisement

Log in

Preparation of Ni2P on twinned Zn0.5Cd0.5S nanocrystals for high-efficient photocatalytic hydrogen production

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Developing efficient non-precious metal semiconductor photocatalysts is highly desirable for photocatalytically splitting water. In this work, the composite of the nanocrystal twinned Zn0.5Cd0.5S (ZCS) solid solution decorated with highly dispersed Ni2P nanoparticles was successfully formed by in situ growth method, and it exhibited remarkable photocatalytic hydrogen production activity of visible light. A high rate of hydrogen production of 30473 µmol h−1 g−1 was achieved, and the apparent quantum yield (AQY) was as high as 83.5% at 420 nm. Moreover, the sample could maintain outstanding photocatalytic hydrogenation activity after 4-cycle continuous catalytic process. The unique nano-twinned structure of ZCS and synergistic effects between the Ni2P and the twinned ZCS are responsible for the dramatically improved catalytic activities of photocatalysts composite.

Graphic abstract

Ni2P is highly dispersible on the surface of ZCS with distinctive double lattice structure, and it exhibits remarkable visible-light photocatalytic hydrogen production activity

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Liu Y, Zhang J, Guan H, Zhao Y, Yang and Zhang B 2018 Preparation of bimetallic Cu-Co nanocatalysts on poly (diallyldimethylammonium chloride) functionalized halloysite nanotubes for hydrolytic dehydrogenation of ammonia borane Appl. Surf. Sci. 427 106

    CAS  Google Scholar 

  2. Feng J, Liu J, Cheng X, Liu J, Xu M and Zhang J 2018 Hydrothermal cation exchange enabled gradual evolution of Au@ZnS–AgAuS yolk–Shell nanocrystals and their visible light photocatalytic applications Adv. Sci. 5 1700376

    Google Scholar 

  3. Clark R J and Felsenfeld G 1972 Electrochemcial photolysis of water at a semiconductor electrode Nature New Biol. 240 226

    CAS  Google Scholar 

  4. Song J, Zhao H, Sun R, Li X and Sun D 2017 An efficient hydrogen evolution catalyst composed of palladium phosphorous sulphide (PdP~0.33S~1.67) and twin nanocrystal Zn0.5Cd0.5S solid solution with both homo- and hetero-junctions Energy Environ. Sci. 10 225

    CAS  Google Scholar 

  5. Liu M, Wang L, Lu G, Yao X and Guo L 2011 Twins in Cd1−xZnxS solid solution: Highly efficient photocatalyst for hydrogen generation from water Energy Environ. Sci. 4 1372

    CAS  Google Scholar 

  6. Tijare S N, Bakardjieva S, Subrt J, Joshi M V, Rayalu S S, Hishita S and Labhsetwar N 2014 Synthesis and visible light photocatalytic activity of nanocrystalline PrFeO3 perovskite for hydrogen generation in ethanol–water system J. Chem. Sci. 126 517

    CAS  Google Scholar 

  7. Lou Y, Zhang Y, Cheng L, Chen J and Zhao Y 2018 A stable plasmonic Cu@Cu2O/ZnO heterojunction for enhanced photocatalytic hydrogen generation ChemSusChem. 11 1505

    CAS  PubMed  Google Scholar 

  8. Iwashina K, Iwase A, Ng Y H, Amal R and Kudo A 2015 Z-schematic water splitting into H2 and O2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron mediator J. Am. Chem. Soc. 137 604

    CAS  PubMed  Google Scholar 

  9. Liang Y-H, Liao M-W, Mishra M and Perng T-P 2019 Fabrication of Ta3N5ZnO direct Z-scheme photocatalyst for hydrogen generation Int. J. Hydrogen Energy 44 19162

  10. Reshak A H 2018 Active photocatalytic water splitting solar-to-hydrogen energy conversion: Chalcogenide photocatalyst Ba2ZnSe3 under visible irradiation Appl. Catal. B Environ. 221 17

    CAS  Google Scholar 

  11. Xiang Z, Nan J, Deng J, Shi Y, Zhao Y, Zhang B and Xiang X 2019 Uniform CdS-decorated carbon microsheets with enhanced photocatalytic hydrogen evolution under visible-light irradiation J. Alloys Compd. 770 886

    CAS  Google Scholar 

  12. Song K, Zhu R, Tian F, Cao G and Ouyang F 2015 Journal of solid state chemistry effects of indium contents on photocatalytic performance of ZnIn2S4 for hydrogen evolution under visible light J. Solid State Chem. 232 138

    CAS  Google Scholar 

  13. Ma D, Shi J-W, Zou Y, Fan Z, Shi J, Cheng L, Sun D, Wang Z and Niu C 2018 Multiple carrier-transfer pathways in a flower-like In2S3/CdIn2S4/In2O3 ternary heterostructure for enhanced photocatalytic hydrogen production Nanoscale 10 7860

    CAS  PubMed  Google Scholar 

  14. Li Q, Meng H, Zhou P, Zheng Y, Wang J, Yu J and Gong J 2013 Zn1−xCdxS solid solutions with controlled bandgap and enhanced visible-Light photocatalytic H2-production activity ACS Catal. 3 882

    CAS  Google Scholar 

  15. Zhao H, Liu H, Sun R, Chen Y and Li X 2018 A Zn0.5Cd0.5S photocatalyst modified by 2D black phosphorus for efficient hydrogen evolution from water ChemCatChem.10 4395

    CAS  Google Scholar 

  16. Li X-l, Wang X-j, Zhu J-Y, Li Y-P, Zhao J and Li F-T 2018 Fabrication of two-dimensional Ni2P/ZnIn2S4 heterostructures for enhanced photocatalytic hydrogen evolution Chem. Eng. J. 353 15

    CAS  Google Scholar 

  17. Ng B-J, Putri L K, Kong X Y, Shak K P Y, Pasbakhsh P, Chai S-P and Mohamed A R 2018 Sub-2nm Pt-decorated Zn0.5Cd0.5S nanocrystals with twin-induced homojunctions for efficient visible-light-driven photocatalytic H2 evolution Appl. Catal. B Environ. 224 360

    CAS  Google Scholar 

  18. Abdel M and Al-johani H 2017 Enhancement of visible light irradiation photocatalytic activity of SrTiO3 nanoparticles by Pt doping for oxidation of cyclohexane J. Chem. Sci. 129 1687

    Google Scholar 

  19. Manbeck G F, Fujita E and Brewer K J 2017 Tetra and Heptametallic Ru(II), Rh(III) Supramolecular Hydrogen Production Photocatalysts J. Am. Chem. Soc. 139 7843

    CAS  PubMed  Google Scholar 

  20. Wang C-C, Chang J-W and Lu S-Y 2017 p-Cu2S/n-ZnxCd1−xS nanocrystals dispersed in a 3D porous graphene nanostructure: an excellent photocatalyst for hydrogen generation through sunlight driven water splitting Cat. Sci. Technol. 7 1305

    CAS  Google Scholar 

  21. Chen Y, Zhao S, Wang X, Peng Q, Lin R, Wang Y, Shen R, Cao X, Zhang L, Zhou G, Li J, Xia A and Li Y 2016 Synergetic integration of Cu1.94S-ZnxCd1−xS heteronanorods for enhanced visible-light-driven photocatalytic hydrogen production J. Am. Chem. Soc. 138 4286

    CAS  PubMed  Google Scholar 

  22. Liu M, Chen Y, Su J, Shi J, Wang X and Guo L 2016 Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst Nat. Energy 1 16151

    CAS  Google Scholar 

  23. Yin M, Zhang W, Qiao F, Sun J, Fan Y and Li Z 2019 Hydrothermal synthesis of MoS2-NiS/CdS with enhanced photocatalytic hydrogen production activity and stability J. Solid State Chem. 270 531

    CAS  Google Scholar 

  24. Zheng M, Ding Y, Yu L, Du X and Zhao Y 2017 In situ grown pristine cobalt sulfide as bifunctional photocatalyst for hydrogen and oxygen evolution Adv. Funct. Mater. 27 1605846

    Google Scholar 

  25. Wang P, Lu Y, Wang X and Yu H 2017 Co-modification of amorphous-Ti(IV) hole cocatalyst and Ni(OH)2 electron cocatalyst for enhanced photocatalytic H2-production performance of TiO2 Appl. Surf. Sci. 391 259

    CAS  Google Scholar 

  26. Zhou X, Jin J, Zhu X, Huang J, Yu J, Wong W-Y and Wong W-K 2016 New Co(OH)2/CdS nanowires for efficient visible light photocatalytic hydrogen production J. Mater. Chem. A 4 5282

    CAS  Google Scholar 

  27. Yue X, Yi S, Wang R, Zhang Z and Qiu S 2016 A novel and highly efficient earth-abundant Cu3P with TiO2 “P-N” heterojunction nanophotocatalyst for hydrogen evolution from water Nanoscale 8 17516

    CAS  PubMed  Google Scholar 

  28. Zeng D, Ong W-J, Chen Y, Tee S Y, Chua C S, Peng D-L and Han M-Y, 2018 Co2P nanorods as an efficient cocatalyst decorated porous g-C3N4 nanosheets for photocatalytic hydrogen production under visible light irradiation Part. Part. Syst. Char. 35 1700251

    Google Scholar 

  29. Qiu B, Zhu Q, Xing M and Zhang J 2017 A robust and efficient catalyst of CdxZn1−xSe motivated by CoP for photocatalytic hydrogen evolution under sunlight irradiation Chem. Commun. 53 897

    CAS  Google Scholar 

  30. Sun Z, Zheng H, Li J and Du P 2015 Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts Energy Environ Sci. 8 2668

    CAS  Google Scholar 

  31. Wu T, Wang P, Ao Y and Wang C 2018 Enhanced visible light activated hydrogen evolution activity over cadmium sulfide nanorods by the synergetic effect of a thin carbon layer and noble metal-free nickel phosphide cocatalyst J. Colloid Interface Sci. 525 107

    CAS  PubMed  Google Scholar 

  32. Qin Z, Xue F, Chen Y, Shen S and Guo L 2017 Spatial charge separation of one-dimensional Ni2P-Cd09Zn01S/g-C3N4 heterostructure for high-quantum-yield photocatalytic hydrogen production Appl. Catal. B Environ. 217 551

    CAS  Google Scholar 

  33. Lin H, Li Y, Li H and Wang X 2017 Multi-node CdS hetero-nanowires grown with defect-rich oxygen-doped MoS2 ultrathin nanosheets for efficient visible-light photocatalytic H2 evolution Nano Res. 10 1377

    CAS  Google Scholar 

  34. Dai D, Xu H, Ge L, Han C, Gao Y, Li S and Lu Y 2017 In-situ synthesis of CoP co-catalyst decorated Zn05Cd05S photocatalysts with enhanced photocatalytic hydrogen production activity under visible light irradiation Appl. Catal. B Environ. 217 429

    CAS  Google Scholar 

  35. Peng S, Yang Y, Tan J, Gan C and Li Y 2018 In situ loading of Ni2P on Cd05Zn05S with red phosphorus for enhanced visible light photocatalytic H2 evolution Appl. Surf. Sci. 447 822

    CAS  Google Scholar 

  36. Shao Z, He Y, Zeng T, Yang Y, Pu X, Ge B and Dou J 2018 Highly efficient photocatalytic H2 evolution using the Ni2P-Zn05Cd05S photocatalyst under visible light irradiation J. Alloys Compd. 769 889

    CAS  Google Scholar 

  37. Zhou D, Xue L-P and Wang N 2019 Robustly immobilized Ni2P nanoparticles in porous carbon networks promotes high-performance sodium-ion storage J. Alloys Compd. 776 912

    CAS  Google Scholar 

  38. Calvinho K, Laursen A and Yap K 2018 Selective CO2 reduction to C3 and C4 oxyhydrocarbons on nickel phosphides at overpotentials as low as 10 mV Energy Environ. Sci. 11 2550

    CAS  Google Scholar 

  39. Wang Z, Jin Z, Yuan H, Wang G and Ma B 2018 Orderly-designed Ni2P nanoparticles on g-C3N4 and UiO-66 for efficient solar water splitting J. Colloid Interf. Sci. 532 287

    CAS  Google Scholar 

  40. Li Y, Ouyang S, Xu H, Wang X, Bi Y, Zhang Y and Ye J 2016 Constructing solid-gas-interfacial fenton reaction over alkalinized-C3N4 photocatalyst to achieve apparent quantum yield of 49% at 420 nm J. Am. Chem. Soc. 138 13289

    CAS  PubMed  Google Scholar 

  41. Lu Y, Shang H, Guan H, Zhao Y and Zhang B 2015 Enhanced visible-light photocatalytic activity of BiVO4 microstructures via annealing process Superlattic Microst. 88 591

    CAS  Google Scholar 

  42. Ran J, Gao G, Li F T, Ma T Y, Du A and Qiao S-Z 2017 Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production Nat. Commun. 8 13907

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang J, Qi L, Ran J, Yu J and Qiao S-Z 2014 Ternary NiS/ZnxCd1−xS/Reduced Graphene Oxide Nanocomposites for Enhanced Solar Photocatalytic H2-Production Activity Adv. Energy Mater. 4 1301925

    Google Scholar 

  44. Lu Z, Li C, Han J, Wang L, Wang S, Ni L and Wang Y 2018 Construction 0D/2D heterojunction by highly dispersed Ni2P QDs loaded on the ultrathin g-C3N4 surface towards superhigh photocatalytic and photoelectric performance Appl. Catal. B Environ. 237 919

    CAS  Google Scholar 

  45. Xu Y, Gong Y, Ren H, Liu W, Li C, Liu X and Niu L 2018 Insight into enhanced photocatalytic H2 production by Ni(OH)2-decorated ZnxCd1−xS nanocomposite photocatalysts J. Alloys Compd. 735 2551

    CAS  Google Scholar 

  46. An C, Feng J, Liu J, Wei G, Du J and Wang H 2017 NiS nanoparticle decorated MoS2 nanosheets as efficient promoters for enhanced solar H2 evolution over ZnxCd1−xS nanorods as efficient promoters for enhanced solar H2 Inorg. Chem. Front. 4 1042

    CAS  Google Scholar 

  47. Zhang J, Qi L, Ran J, Yu J and Qiao S-Z 2014 Ternary NiS/ZnxCd1−xS/reduced graphene oxide nanocomposites for enhanced solar photocatalytic H2-production activity Adv. Energy Mater. 4 1301925

    Google Scholar 

  48. Wang P, Zhan S, Wang H, Xia Y, Hou Q, Zhou Q, Li Y and Kumar R R 2018 Cobalt phosphide nanowires as efficient co-catalyst for photocatalytic hydrogen evolution over Zn05Cd05S Appl. Catal. B Environ. 230 210

    CAS  Google Scholar 

  49. Dai D, Wang L, Xiao N, Li S, Xu H, Liu S, Xu B, Lv D, Gao Y, Song W, Ge L and Liu J 2018 In-situ synthesis of Ni2P co-catalyst decorated Zn05Cd05S nanorods for high-quantum-yield photocatalytic hydrogen production under visible light irradiation Appl. Catal. B Environ. 233 194

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 21706242, 21576247, and U1804140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yafei Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 337 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Yin, L., Dai, K. et al. Preparation of Ni2P on twinned Zn0.5Cd0.5S nanocrystals for high-efficient photocatalytic hydrogen production. J Chem Sci 132, 26 (2020). https://doi.org/10.1007/s12039-019-1727-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-019-1727-1

Keywords

Navigation