Skip to main content
Log in

On the position of La, Lu, Ac and Lr in the periodic table: a perspective

  • Review Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The periodic table of elements, organised as blocks of elements that contain similar properties, occupies a central role in chemistry. However, the position of some of the elements in the periodic table is a debate that has been ensuing over the past one and a half long centuries. Particularly, the positions of lanthanum (La), lutetium (Lu), actinium (Ac) and lawrencium (Lr) in the periodic table have been quite controversial. Different kinds of studies carried out by various research groups have yet left the fate of these elements undecided as the results of these investigations suggested that these elements could potentially be placed in the d-block, p-block or all four in the f-block. Our recent work looked into this question from a new perspective, involving encapsulation of La, Lu, Ac and Lr into Zintl ion clusters, Pb122− and Sn2−12. These clusters were chosen as they provide a fitting environment for the determination of structural, thermodynamic and electronic properties of the encapsulated species. Various results that have been evaluated and subsequently analysed (Joshi et al. in Phys. Chem. Chem. Phys. 20:15253–15272, 2018) in order to seek out similarities and differences for making justified conclusions about the placement of all these four elements in the periodic table are the subject matter of this review article.

Graphic Abstract

This review highlights a unique methodology wherein Ln and An encapsulated Pb122− and Sn2−12 clusters provided in-depth insights on the long-drawn controversy: positions of lutetium, lawrencium, lanthanum and actinium in the modern periodic table. Electronic, thermodynamic and structural parameters have been comprehensively investigated by DFT to yield a justified conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jensen W B 1982 The positions of lanthanum (actinium) and lutetium (lawrencium) in the periodic table J. Chem. Educ. 59 634

    CAS  Google Scholar 

  2. Jensen W B 2009 Misapplying the periodic law J. Chem. Educ. 86 1186

    CAS  Google Scholar 

  3. Desclaux J-P and Fricke B 1980 Relativistic prediction of the ground state of atomic lawrencium J. Phys. 41 943

    CAS  Google Scholar 

  4. Brewer L 1971 Energies of the electronic configurations of the lanthanide and actinide neutral atoms J. Opt. Soc. Am. 61 1101

    CAS  Google Scholar 

  5. Fritzsche S, Dong C Z, Koike F and Uvarov A 2007 The low-lying level structure of atomic lawrencium (z = 103): energies and absorption rates Eur. Phys. J. D. 45 107

    CAS  Google Scholar 

  6. Lavelle L 2008 Lanthanum (La) and actinium (ac) should remain in the d-block J. Chem. Educ. 85 1482

    CAS  Google Scholar 

  7. Lavelle L 2009 Response to misapplying the periodic law J. Chem. Educ. 86 1187

    CAS  Google Scholar 

  8. Lavelle L 2008 Response to the flyleaf periodic table J. Chem. Educ. 85 1491

    CAS  Google Scholar 

  9. Xu W H and Pyykkö P 2016 Is the chemistry of lawrencium peculiar? Phys. Chem. Chem. Phys. 18 17351

    CAS  PubMed  Google Scholar 

  10. Sato T K, Asai M, Borschevsky A, Stora T, Sato N, Kaneya Y, Tsukada K, Düllmann C E, Eberhardt K, Eliav E, Ichikawa S et al. 2015 Measurement of the first ionization potential of lawrencium, element 103 Nature 520 209

    CAS  PubMed  Google Scholar 

  11. IUPAC, iupac.org/what−we−do/periodic−table−of−elements/, Downloaded. (2016)

  12. Joshi M, Chandrasekar A and Ghanty T K 2018 Theoretical investigation of M@Pb12 2− and M@Sn 2−12 zintl clusters (M = Lrn+, Lun+, La3+, Ac3+ and n = 0, 1, 2, 3) Phys. Chem. Chem. Phys. 20 15253

    CAS  Google Scholar 

  13. TURBOMOLE is program package developed by the quantum chemistry group at the University of Karlsruhe, Germany, 1988: Ahlrichs R, Bär M, Häser M, Horn H and Kölmel C Chem. Phys. Lett.1989 162 165

    Google Scholar 

  14. ADF2016; SCM, Theoretical Chemistry, VrijeUniversiteit: Amsterdam, The Netherlands. http://www.scm.com

  15. teVelde G, Bickelhaupt F M, van Gisbergen S A, Fonseca Guerra C, Baerends E J, Snijders J G and Ziegler T 2001 Chemistry with ADF J. Comput. Chem. 22 931

    CAS  Google Scholar 

  16. Perdew J P, Burke K and Ernzerhof M 1996 Generalized gradient approximation made simple Phys. Rev. Lett. 77 3865

    CAS  Google Scholar 

  17. Dolg M, Stoll H, Savin A and Preuss H 1989 Energy−adjusted pseudopotentials for the rare earth elements Theor. Chim. Acta 75 173

    CAS  Google Scholar 

  18. Bergner A, Dolg M, Kuechle W, Stoll H and Preuss H 1993 Ab initio energy−adjusted pseudopotentials for elements of groups 13–17 Mol. Phys. 80 1431

    CAS  Google Scholar 

  19. Dolg M, Stoll H and Preuss H 1993 A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds Theor. Chim. Acta 85 441

    CAS  Google Scholar 

  20. Eichkorn K, Weigend F, Treutler O and Ahlrichs R 1997 Auxiliary basis sets for main row atoms and transition metals and their use to approximate coulomb potentials Theor. Chem. Acc. 97 119

    CAS  Google Scholar 

  21. Kuechle W, Dolg M, Stoll H and Preuss H 1994 Energy-adjusted pseudopotentials for the actinides. parameter sets and test calculations for thorium and thorium monoxide J. Chem. Phys. 100 7535

    CAS  Google Scholar 

  22. Cao X and Dolg M 2001 Valence basis sets for relativistic energy−consistent small−core lanthanide J. Chem. Phys. 115 7348

    CAS  Google Scholar 

  23. Weigend F and Ahlrichs R 2005 Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy Phys. Chem. Chem. Phys. 7 3297

    CAS  Google Scholar 

  24. Kroto H W, Heath J R, O’Brien S C, Curl R F and Smalley R E 1985 C60: Buckminsterfullerene Nature 318 162

    CAS  Google Scholar 

  25. Stark W J 2011 Nanoparticles in biological systems Angew. Chem., Int. Ed. 50 1242

    CAS  Google Scholar 

  26. Daniel M C and Astruc D 2004 Gold nanoparticles: assembly, supramolecular chemistry, quantum–size–related properties, and applications toward biology, catalysis, and nanotechnology Chem. Rev. 104 293

    CAS  Google Scholar 

  27. Luo Z, Castleman A W Jr and Khanna S N 2016 Reactivity of metal clusters Chem. Rev. 116 14456

    CAS  PubMed  Google Scholar 

  28. Jin R, Zeng C, Zhou M and Chen Y 2016 Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities Chem. Rev. 116 10346

    CAS  Google Scholar 

  29. Yadav B C and Kumar R 2016 Structure, properties and applications of fullerene Int. J. Nanotechnol. Appl. 2 15

    Google Scholar 

  30. Chen X, Deng K, Liu Y, Tang C, Yuan Y, Hu F, Wu H, Huang D, Tan W and Wang X 2008 The geometric and magnetic properties of the endohedral plumbaspherene M@Pb12 clusters (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni) Chem. Phys. Lett. 462 275

    CAS  Google Scholar 

  31. Lichtenberger N, Wilson R J, Eulenstein A R, Massa W, Clérac R, Weigend F and Dehnen S 2016 Main Group metal–actinide magnetic coupling and structural response upon U4+ inclusion into Bi, Tl/Bi or Pb/Bi cage J. Am. Chem. Soc. 138 9033

    CAS  PubMed  Google Scholar 

  32. Manzoor D and Pal S 2015 Reactivity and catalytic activity of hydrogen atom chemisorbed silver cluster J. Phys. Chem. A 119 6162

    Google Scholar 

  33. Cui L-F, Huang X, Wang L-M, Zubarev D Y, Boldyrev A I, Li J and Wang L-S 2006 Sn 2–12 : Stannaspherene J. Am. Chem. Soc. 128 8390

    CAS  PubMed  Google Scholar 

  34. Cui L-F, Huang X, Wang L-M, Li J and Wang L-S 2006 Pb12 2–: Plumbaspherene J. Phys. Chem. A 110 10169

    Google Scholar 

  35. Zhang X, Li G, Xing X, Zhao X, Tang Z and Gao Z 2001 Formation of binary alloy cluster anions from group–14 elements and cobalt and comparison with solid state Alloys Rapid Commun. Mass Spectrom. 15 2399

    CAS  Google Scholar 

  36. Bai J 2003 Synthesis of inorganic fullerene−like molecules Science 300 781

    CAS  PubMed  Google Scholar 

  37. Esenturk E N, Fettinger J, Lam, Y-F and Eichhorn B 2004 [Pt@Pb12]2− Angew. Chem., Int. Ed. 43 2132

    CAS  Google Scholar 

  38. Esenturk E N, Fettinger J and Eichhorn B 2005 The closo−Pb10 2−zintl ion in the [Ni@Pb10]2− cluster Chem. Commun. 247

  39. Spiekermann A, Hoffmann S D and Fässler T F 2006 The Zintl ion [Pb10]2−: A rare example of a homoatomiccloso cluster Angew. Chem., Int. Ed. 45 3459

    CAS  Google Scholar 

  40. Esenturk E N, Fettinger J and Eichhorn B 2006 The Pb12 2− and Pb10 2−zintl ions and the M@Pb12 2− and M@Pb10 2− cluster series where M = Ni, Pd, Pt J. Am. Chem. Soc. 128 9178

    CAS  PubMed  Google Scholar 

  41. Reveles J U and Khanna S N 2006 Electronic counting rules for the stability of metal–silicon clusters Phys. Rev. B 74 035435

    Google Scholar 

  42. Cui L F, Huang X, Wang L M, Li J and Wang L S 2007 Endohedral stannaspherenes M@Sn 12 : a rich class of stable molecular cage clusters Angew. Chem., Int. Ed. 46 742

  43. Koyasu K, Atobe J, Furuse S and Nakajima A 2008 Anion photoelectron spectroscopy of transition metal– and lanthanide metal–silicon clusters: MSi n (n = 6–20) J. Chem. Phys. 1292 14301

    Google Scholar 

  44. Atobe J, Koyasu K, Furuse S and Nakajima A 2012 Anion photoelectron spectroscopy of germanium and tin clusters containing a transition− or lanthanide−metal atom, MGe n (n = 8–20) and MSn n (n = 15–17) (M = Sc–V, Y–Nb, and Lu–Ta) Phys. Chem. Chem. Phys. 14 9403

    CAS  Google Scholar 

  45. Cao T-T, Zhao L-X, Feng X-J, Lei Y-M and Luo Y-H 2009 Structural and electronic properties of LuSin (n = 1–12) clusters: a density functional theory investigation J. Mol. Struct. TheoChem. 895 148

    CAS  Google Scholar 

  46. Fässler T F and Hoffmann S D 2004 Endohedral zintl ions: intermetalloid clusters Angew. Chem., Int. Ed. 43 6242

    Google Scholar 

  47. Dognon J-P, Clavaguera C and Pyykkö P 2007 Towards a 32–electron principle: Pu@Pb12 and related systems Angew. Chem., Int. Ed. 46 1427

    CAS  Google Scholar 

  48. Kong X-J, Ren Y-R, Long L-S, Zheng Z, Huang R-B and Zheng L-S 2007 A keplerate magnetic cluster featuring an icosidodecahedron of Ni(II) ions encapsulating a dodecahedron of La(III) ions J. Am. Chem. Soc. 129 7016

    CAS  PubMed  Google Scholar 

  49. Kandalam A K, Chen G and Jena P 2008 Unique magnetic coupling between Mn doped stannaspherenes Mn@Sn12 Appl. Phys. Lett. 92 143109

    Google Scholar 

  50. Rohrmann U and Schäfer R 2015 Stren–Gerlach experiments on Fe@Sn12: magnetic response of a jahn–teller distorted endohedrally doped molecular cage cluster J. Phys. Chem. C 119 10958

    CAS  Google Scholar 

  51. Wang J-Q, Stegmaier S, Wahl B and Fässler T F 2010 Step–by–step synthesis of the endohedral stannaspherene [Ir@Sn12]3– via the capped cluster anion [Sn9Ir(cod)]3– Chem. Eur. J. 16 1793

    CAS  Google Scholar 

  52. Rohrmann U and Schäfer R 2013 Stern–Gerlach experiments on Mn@Sn12: identification of a paramagnetic superatom and vibrationally induced spin orientation Phys. Rev. Lett. 111 133401

    Google Scholar 

  53. Dognon J-P, Clavaguéra C and Pyykkö P 2010 Chemical properties of the predicted 32–electron systems Pu@Sn12 and Pu@Pb12 C. R. Chim. 13 884

    CAS  Google Scholar 

  54. Zhou B, Krämer T, Thompson A L, McGrady J E and Goicoechea J M 2011 A highly distorted open–shell endohedral zintl cluster: [Mn@Pb12]3− Inorg. Chem. 50 8028

    CAS  Google Scholar 

  55. Grubisic A, Wang H, Li X, Ko Y J, Kocak F S, Pederson M R, Bowen K H and Eichhorn B W 2011 Photoelectron spectroscopic and computational studies of the Pt@Pb10 1– and Pt@Pb 1–/2–12 anions Proc. Natl. Acad. Sci. U.S.A. 108 14757

    CAS  Google Scholar 

  56. Bhattacharyya S, Nguyen T T, Haeck K, Lievens P and Janssens E 2013 Mass–selected photodissociation studies of AlPb +n clusters (n = 7–16): evidence for the extraordinary stability of AlPb10 + and AlPb12 + Phys. Rev. B 87 054103

    Google Scholar 

  57. Kong X-J, Ren Y-R, Long L-S, Zheng Z, Nicol G, Huang R-B and Zheng L-S 2008 Dual shell−like magnetic clusters containing NiII and LnIII (Ln = La, Pr, and Nd) ions Inorg. Chem. 47 2728

    CAS  Google Scholar 

  58. Penga Q and Shen J 2008 Growth behavior of La@Sin (n = 1–21) metal-encapsulated clusters J. Chem. Phys. 128 084711

    Google Scholar 

  59. Sekhar P, Ghosh A, Joshi M and Ghanty T K 2017 Noble gas encapsulated endohedral zintl ions Ng@Pb12 2− and Ng@Sn 2−12 (Ng = He, Ne, Ar, and Kr): a theoretical investigation J. Phys. Chem. C 121 11932

    CAS  Google Scholar 

  60. Srivastava A K, Pandey S K and Misra N 2016 Encapsulation of lawrencium into C60 fullerene: Lr@C60 versus Li@C60 Mater. Chem. Phys. 177 437

    CAS  Google Scholar 

  61. Shao N, Bulusu S and Zeng X C 2008 Search for lowest-energy structure of zintldianion Si12 2−, Ge 2−12 , and Sn 2−12 J. Chem. Phys. 128 154326

    PubMed  Google Scholar 

  62. Li X, Kiran B, Li J, Zhai H-J and Wang L-S 2002 Experimental observation and confirmation of icosahedral W@Au12 and Mo@Au12 molecules Angew. Chem., Int. Ed. 41 4786

    CAS  Google Scholar 

  63. Pyykkö P and Runeberg N 2002 Icosahedral WAu12:a predicted closed‐shell species, stabilized by aurophilic attraction and relativity and in accord with the 18‐electron rule Angew. Chem., Int. Ed. 12 2174

    Google Scholar 

  64. Li L-J, Pan F-X, Li F-Y, Chen Z-F and Sun Z-M 2017 Synthesis, characterization and electronic properties of an endohedral plumbaspherene [Au@Pb12]3− Inorg. Chem. Front. 4 1393

    CAS  Google Scholar 

  65. Langmuir I 1921 Types of valence Science 54 59

    CAS  PubMed  Google Scholar 

  66. Pyykkö P 2006 Understanding the eighteen–electron rule J. Organomet. Chem. 691 4336

    Google Scholar 

  67. deHeer W A 1993 The physics of simple metal clusters: experimental aspects and simple models Rev. Mod. Phys. 65 611

    CAS  Google Scholar 

  68. Luo Z and Castleman A W 2014 Special and general superatoms Acc. Chem. Res. 47 2931

    CAS  Google Scholar 

  69. Autschbach J, Hess B A, Johansson M P, Neugebauer J, Patzschke M, Pyykkö P, Reiher M and Sundholm D 2004 Properties of WAu12 Phys. Chem. Chem. Phys. 6 11

    CAS  Google Scholar 

  70. Cao G-J, Schwarz W H E and Li J 2015 An 18–electron system containing a superheavy element: theoretical studies of Sg@Au12 Inorg. Chem. 54 3695

    CAS  Google Scholar 

  71. Dognon J P, Clavaguéra C and Pyykkö P 2009 A predicted organometallic series following a 32–electron principle: An@C28 (An = Th, Pa+, U2+, Pu4+) J. Am. Chem. Soc. 131 238

    CAS  PubMed  Google Scholar 

  72. Manna D and Ghanty T K 2012 Prediction of a new series of thermodynamically stable actinide encapsulated fullerene systems fulfilling the 32–electron principle J. Phys. Chem. C 116 25630

    CAS  Google Scholar 

  73. Dognon J P, Clavaguéra C and Pyykkö P 2012 A new, centered 32–electron system: the predicted [U@Si20]6−–like isoelectronic series Chem. Sci. 3 2843

    CAS  Google Scholar 

  74. Manna D, Sirohiwal A and Ghanty T K 2014 Pu@C24: A new example satisfying the 32–electron principle J. Phys. Chem. C 118 7211

    CAS  Google Scholar 

  75. Dai X, Gao Y, Jiang W, Leiab Y and Wang Z 2015 U@C28: The electronic structure induced by the 32–electron principle Phys. Chem. Chem. Phys. 17 23308

    CAS  Google Scholar 

  76. Muñoz–Castro A 2013 Golden endohedral main–group clusters, [E@Au12]q−: theoretical insights into the 20–e principle J. Phys. Chem. Lett. 4 3363

    Google Scholar 

  77. Becke A D and Edgecombe K E 1990 A simple measure of electron localization in atomic and molecular systems J. Chem. Phys. 92 5397

    CAS  Google Scholar 

  78. Walshe A 2018 Chemistry World. Accessed on 21-May: https://www.chemistryworld.com/news/new-rationale-for-15-element-wide-f-block/3009047.article

  79. Jemmis E D 2018 Controversy continues on the position of elements in the periodic table Curr. Sci. 114 2428

    CAS  Google Scholar 

  80. Lemonick S 2019 Rearranging the table Chem. Eng. News. 97 26

    Google Scholar 

Download references

Acknowledgements

AC thanks SERB-DST for the post-doctoral fellowship. M.J. and T.K.G. gratefully acknowledge the liberal support provided by their host institution, Bhabha Atomic Research Centre, Mumbai. M. J. would like to thank Homi Bhabha National Institute for the PhD. fellowship in Chemical Sciences. It is a pleasure to thank Prof. E. D. Jemmis for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan K Ghanty.

Additional information

Special Issue on 150 years of the Periodic Table

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrasekar, A., Joshi, M. & Ghanty, T.K. On the position of La, Lu, Ac and Lr in the periodic table: a perspective. J Chem Sci 131, 122 (2019). https://doi.org/10.1007/s12039-019-1713-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-019-1713-7

Keywords

Navigation