Skip to main content
Log in

Solvent-assisted monomeric molecular structure of the phosphate diester and the synthesis of menthol-based phosphate diesters

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Phosphate diesters are well known to form intermolecular H-bonded dimeric structures in their solid-state. Recently, we reported 2,6-(CHPh)2-4-iPr-phenyl substituted phosphate diester exists as H-bonded monomeric molecular structure along with water dimer in the solid-state. Herein we report 2,6-(CHPh)2-4-iPr-phenyl substituted phosphate diester forms a monomeric molecular structure in the solid-state upon co-crystallization with dimethylformamide, DMF (Me2NCHO). The -CHO group of DMF simultaneously acts as an H-bond acceptor to P-OH and an H-bond donor to P=O moieties. We also used the alcohols, ROH (R = Me, Et, iPr, and tBu), for crystallisation of 2,6-(CHPh)2-4-iPr-phenyl substituted phosphate diester. In these instances, solvent-incorporated dimeric structures are found in the solid-state. We also report the syntheses and molecular structures of anionic phosphate diesters of 2,6-(CHPh)2-4-iPr-phenyl substituted phosphate diester possessing various counter cations. Moreover, we also report the syntheses and molecular structures of phosphate diesters based on (−)-menthol, (+)-menthol and (+)/(−)-menthol. These exist as H-bonded dimers in the solid-state.

Graphic abstract

Herein we report 2,6-(CHPh)2-4-iPr-phenyl substituted phosphate diester forms a monomeric molecular structure in the solid-state upon co-crystallization with dimethylformamide, DMF (Me2NCHO). The -CHO group of DMF simultaneously acts as an H-bond acceptor to P-OH and an H-bond donor to P=O moieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Scheme 2
Figure 2
Scheme 3
Figure 3
Scheme 4
Figure 4

Similar content being viewed by others

References

  1. Murugavel R, Choudhury A, Walawalkar M G, Pothiraja R and Rao C N R 2008 Metal Complexes of Organophosphate Esters and Open-Framework Metal Phosphates: Synthesis, Structure, Transformations, and Applications Chem. Rev. 108 3549

    CAS  Google Scholar 

  2. Roesky H W, Walawalkar M G and Murugavel R 2001 Is Water a Friend or Foe in Organometallic Chemistry? The Case of Group 13 Organometallic Compounds Acc. Chem. Res. 34 201

    Article  CAS  Google Scholar 

  3. Murugavel R, Walawalkar M G, Dan M, Roesky H W and Rao C N R 2004 Transformations of Molecules and Secondary Building Units to Materials: A Bottom-Up Approach Acc. Chem. Res. 37 763

    Article  CAS  Google Scholar 

  4. Guillou N, Gao Q, Forster P M, Chang J-S, Nogus M, Park S-E, Frey G and Cheetham 2001 A K, Nickel(ii) Phosphate VSB-5: A Magnetic Nanoporous Hydrogenation Catalyst with 24-Ring Tunnels Angew. Chem. 113 2913

    Google Scholar 

  5. Walawalkar M G, Roesky H W and Murugavel R 1999 Molecular Phosphonate Cages: Model Compounds and Starting Materials for Phosphate Materials Acc. Chem. Res. 32 117

    Article  CAS  Google Scholar 

  6. Goura J and Chandrasekhar V 2015 Molecular Metal Phosphonates Chem. Rev. 115 6854

    Article  CAS  Google Scholar 

  7. Murugavel R, Kuppuswamy S, Gogoi N and Steiner A 2010 Assembling Discrete D4R Zeolite SBUs through Noncovalent Interactions. 3. Mediation by Butanols and 1,2-Bis(dimethylamino)ethane Inorg. Chem. 49 2153

    Article  CAS  Google Scholar 

  8. Murugavel R, Kuppuswamy S, Maity A N and Singh M P 2009 Di-, Tri-, Tetra-, and Hexanuclear Copper(II) Mono-organophosphates: Structure and Nuclearity Dependence on the Choice of Phosphorus Substituents and Auxiliary N-Donor Ligands Inorg. Chem. 48 183

    CAS  Google Scholar 

  9. Murugavel R and Shanmugan S 2008 Asymmetric Pentameric and Tetrameric Organooxotin Clusters: Insights into Their Formation through Partial Dearylation Organometallics 27 2784

    Article  CAS  Google Scholar 

  10. Cheng W, Feng Z-Q and Tang J-M 2011 Bis(3,5-dimethoxyphenyl)phosphinic acid Acta Crystallogr., Sect. E 67 o896

    Article  CAS  Google Scholar 

  11. Székely G, Farkas V, Párkányi L, Tóth T, Hollósi M. and Huszthy P 2010 Crystal structures of crown ethers containing an alkyl diarylphosphinate or a diarylphosphinic acid unit Struct. Chem. 21 277

    Google Scholar 

  12. Lyssenko K A, Grintselev-Knyazev G V and Antipin M Y 2002 Nature of the P–O bond in diphenylphosphonic acid: experimental charge density and electron localization function analysis Mendeleev Commun. 12 128

    Article  Google Scholar 

  13. Fenske D, Mattes R, Löns J and Tebbe K-F 1973 Die Kristallstruktur von Diphenylphosphinsäure Chem. Ber. 106 1139

    CAS  Google Scholar 

  14. Xu B, Zhu S-F, Zhang Z-C, Yu Z-X, Ma Y. and Zhou Q-L 2014 Highly enantioselective S–H bond insertion cooperatively catalyzed by dirhodium complexes and chiral spiro phosphoric acids Chem. Sci. 5 1442

    Article  CAS  Google Scholar 

  15. Nayak S K, Chandrasekhar S and Row T N G 2008 1,1′-Bi-naphthalene-2,2′-diyl hydrogen phosphate Acta Crystallogr., Sect. E 64 o256

    Article  Google Scholar 

  16. Swamy K C K, Kumaraswamy S and Kommana P 2001 Very Strong C−H···O, N−H···O, and O−H···O Hydrogen Bonds Involving a Cyclic Phosphate J. Am. Chem. Soc. 123 12642

    Article  CAS  Google Scholar 

  17. Klussmann M, Ratjen L, Hoffmann S, Wakchaure V, Goddard R and List B 2010 Synthesis of TRIP and Analysis of Phosphate Salt Impurities Synth. Lett. 2189

    Article  Google Scholar 

  18. DeFord J, Chu F and Anslin E V 1996 Dimerization constants for phosphoric acid diesters Tetrahedron Lett. 37 1925

    Article  CAS  Google Scholar 

  19. Peppard D F, Ferraro J R and Mason G W 1957 Possible hydrogen bonding in certain interactions of organic phosphorus compounds J. Inorg. Nucl. Chem. 4 371

    Article  CAS  Google Scholar 

  20. Peppard D F, Ferraro J R and Mason G W 1958 Hydrogen bonding in organophosphoric acids J. Inorg. Nucl. Chem. 7 231

    Article  CAS  Google Scholar 

  21. Dar A A, Mallick A and Murugavel R 2015 Synthetic strategies to achieve further-functionalised monoaryl phosphate primary building units: crystal structures and solid-state aggregation behaviour New J. Chem. 39 1186

    CAS  Google Scholar 

  22. Kalita A C, Sharma K and Murugavel R 2014 Pseudopolymorphism leading and two different supramolecular aggregations in a phosphate monoester: role of a rare water-dimer CrystEngComm 16 51

    Article  CAS  Google Scholar 

  23. Kuczek M, Bryndal I. and Lis T 2006 4-Nitrophenyl phosphoric acid and its four different potassium salts: a solid state structure and kinetic study CrystEngComm 8 150

  24. Onoda A, Yamada Y, Okamura T-A, Yamamoto H and Ueyama N 2002 Mononuclear Ca(II)-Bulky Aryl-Phosphate Monoanion and Dianion Complexes with Ortho-Amide Groups Inorg. Chem. 41 6038

    CAS  Google Scholar 

  25. Onoda A, Okamura T, Yamamoto H and Ueyama N 2001One‐dimensional P–OH···O=P hydrogen bonds restricted by the bulky molecule 2,6‐diiso-propyl-phenyl di-hydrogen phosphate Acta Crystallogr., Sect. E o1022

  26. Mehring M, Schurmann M and Ludwig R 2003 tert-Butylphosphonic Acid: From the Bulk to the Gas Phase Chem. Eur. J. 9 837

    Article  CAS  Google Scholar 

  27. Chandrasekhar V, Sasikumar P, Boomishankar R and Anantharaman G 2006 Assembly of Lipophilic Tetranuclear (Cu4 and Zn4) Molecular Metallophosphonates from 2,4,6-Triisopropylphenylphosponic Acid and Pyrazole Ligands Inorg. Chem. 45 3344

    CAS  Google Scholar 

  28. Weakley T J R 1976 Benzenephosphonic acid Acta Cryst. B32 2889

    Article  CAS  Google Scholar 

  29. Parmar D, Sugiono E, Raja S and Rueping M 2014 Complete Field Guide to Asymmetric BINOL-Phosphate Derived Brønsted Acid and Metal Catalysis: History and Classification by Mode of Activation; Brønsted Acidity, Hydrogen Bonding, Ion Pairing, and Metal Phosphates Chem. Rev. 114 9047

    CAS  Google Scholar 

  30. Minyaev M E, Nifantev I E, Tavtorkin A N, Korchagina S A and Zeynalova S S 2015 Crystal structure of [bis(2,6-diisopropylphenyl) phosphato-κO]tris(methanol-κO)lithium methanol monosolvate Acta Cryst. E71 443

    Article  CAS  Google Scholar 

  31. Murugavel R, Sathiyendiran M, Pothiraja R, Walawalkar M G, Mallah T and Rivire E 2004 Monomeric, Tetrameric, and Polymeric Copper Di-tert-butyl Phosphate Complexes Containing Pyridine Ancillary Ligands Inorg. Chem. 43 945

    CAS  Google Scholar 

  32. Murugavel R and Shanmugan S 2007 Seeking tetrameric transition metal phosphonate with a D4R core and organising it into a 3-D supramolecular assembly Chem. Commun. 1257

  33. Saxena P, Mandal S K, Sharma K and Murugavel R 2018 Delineating factors that dictate the framework of a bulky phosphate derived metal complexes: Sterics of phosphate, anion of the metal salt and auxiliary N-donor ligand Inorg. Chim. Acta 469 353

    CAS  Google Scholar 

  34. Mandal D, Santra B, Kalita P, Chrysochos N, Malakar A, Narayanan R S, Biswas S, Schulzke C, Chandrasekhar V and Jana A 2017 2,6-(Diphenylmethyl)-Aryl-Substituted Neutral and Anionic Phosphates: Approaches to H-Bonded Dimeric Molecular Structures Chem. Select 2 8898

    CAS  Google Scholar 

  35. Santra B, Mandal D, Gupta V, Kalita P, Kumar V, Narayanan R S, Dey A, Chrysochos N, Mohammad A, Singh A, Zimmer M, Dalapati R, Biswas S, Schulzke C, Chandrasekhar V, Scheschkewitz D and Jana A 2019 Structural Diversity in Supramolecular Organization of Anionic Phosphate Monoesters: Role of Cations ACS Omega 4 2118

    Article  CAS  Google Scholar 

  36. Santra B, Narayanan R S, Kalita P, Kumar V, Mandal D, Gupta V, Zimmer M, Huch V, Chandrasekhar V, Scheschkewitz D, Schulzke C and Jana A 2019 Modulation of the Nuclearity of Molecular Mg(II)-Phosphates: Solid-State Structural Change Involving Coordinating Solvents Dalton Trans. 48 8853

    Article  CAS  Google Scholar 

  37. Gupta V, Santra B, Mandal D, Das S, Narayanan R S, Kalita P, Rao D K, Schulzke C, Pati S K, Chandrasekhar V and Jana A 2018 Neutral and anionic phosphate-diesters as molecular templates for the encapsulation of a water dimer Chem. Commun. 54 11913

    CAS  Google Scholar 

  38. Korb M and Lang H 2014 Planar Chirality from the Chiral Pool: Diastereoselective Anionic Phospho-Fries Rearrangements at Ferrocene Organometallics 33 6643

    Article  CAS  Google Scholar 

  39. SMART & SAINT Software Reference manuals, Version 6.45; Bruker Analytical X-ray Systems, Inc.: Madison, WI, 2003

  40. Sheldrick G M 1996 SADABS, Program for Empirical Absorption Correction, University of Gottingen, Germany

    Google Scholar 

  41. Sheldrick G M 2015 SHELXT – Integrated space-group and crystal structure determination Acta Crystallogr. A71 3

  42. Sheldrick G M 2015 Crystal structure refinement with SHELXL Acta Crystallogr. C71 3

    Google Scholar 

  43. Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K and Puschmann H 2009 OLEX2: a complete structure solution, refinement and analysis program J. Appl. Cryst. 42 339

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the TIFR Centre for Interdisciplinary Science Hyderabad, Hyderabad, India. V. G. acknowledges financial support from the Science and Engineering Research Board (SERB-NPDF) (Project No. PDF/2017/001902), Government of India. VC is thankful to the Department of Science and Technology, New Delhi, India, for National J. C. Bose fellowships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nitin T Patil, Carola Schulzke, Vadapalli Chandrasekhar or Anukul Jana.

Additional information

Special Issue on 150 years of the Periodic Table

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1759 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, D., Gupta, V., Santra, B. et al. Solvent-assisted monomeric molecular structure of the phosphate diester and the synthesis of menthol-based phosphate diesters. J Chem Sci 131, 121 (2019). https://doi.org/10.1007/s12039-019-1712-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-019-1712-8

Keywords

Navigation