Skip to main content

Advertisement

Log in

Materials with electronic transitions in the near-infrared

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Concepts have been developed which favor low-energy absorption in the near-infrared (NIR) region. These include metal-metal charge transfer (inter-valence charge transfer) transitions of mixed-valent species, radical ion compounds (anions, cations), and mixtures thereof. Recent examples from ruthenium coordination chemistry are presented in order to illustrate analysis and assignment of such NIR transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Bouit P-A, Wetzel G, Berginc G, Loiseaux B, Toupet L, Feneyrou P, Bretonniere Y, Kamada K, Maury O and Andraud C 2007 Near IR Nonlinear Absorbing Chromophores with Optical Limiting Properties at Telecommunication Wavelengths Chem. Mater. 19 5325

    CAS  Google Scholar 

  2. Wang L V and Wu H-I 2007 Biomedical Optics (Hoboken: Wiley)

    Google Scholar 

  3. Horvath H 1993 Atmospheric light absorption – A review Atmos. Environ. A 27 293

    Google Scholar 

  4. Ozaki Y, McClure W F and Christy A A 2006 Near-Infrared Spectroscopy in Food Science and Technology (Hoboken: Wiley)

    Google Scholar 

  5. Bundgaard E and Krebs F C 2007 Low band gap polymers for organic photovoltaics Sol. Energy Mater. Sol. Cells 91 954

    CAS  Google Scholar 

  6. Fabian J, Nakazumi H and Matsuoka M 1982 Near-Infrared Absorbing Dyes Chem. Rev. 92 1197

    Google Scholar 

  7. Kaim W 2011 Concepts for metal complex chromophors absorbing in the near infrared Coord. Chem. Rev. 255 2503

    CAS  Google Scholar 

  8. Wang F, Lin T T, He C, Chi H, Tang T and Lai Y-H 2012 Azulene-containing Organic Chromophores with Tunable Near-IR Absorption in the Range of 0.6 to 1.7 mm J. Mater. Chem. 22 10448

    CAS  Google Scholar 

  9. Mews N M, Berkefeld A, Hörner G and Schubert H 2017 Controlling Near-Infrared Chromophore Electronic Properties through Metal-Ligand Orbital Alignment J. Am. Chem. Soc. 139 2808

    CAS  PubMed  Google Scholar 

  10. He H 2014 Near-infrared emitting lanthanide complexes of porphyrin and BODIPY dyes Coord. Chem. Rev. 273–274 87

    Google Scholar 

  11. Otto S, Grabolle M, Förster C, Kreitner C, Resch-Genger U and Heinze K 2015 [Cr(ddpd)2]3+: A Molecular, Water-Soluble, Highly NIR-Emissive Ruby Analogue Angew. Chem. Int. Ed. 54 11572

    CAS  Google Scholar 

  12. Shida T 1988 Electronic absorption spectra of radical ions (Amsterdam: Elsevier)

    Google Scholar 

  13. Ehret F, Bubrin M, Záliš S and Kaim W 2015 Metal Chelating N,N’-Bis(4-dimethylaminophenyl)acetamidinyl Radical: A new chromophore for the near infrared Chem. Eur. J. 21 12275

    CAS  PubMed  Google Scholar 

  14. Rocha R C, Rein F N, Jude H, Shreve A P, Concepcion J J and Meyer T J 2008 Observation of three intervalence-transfer bands for a Class II-III mixed-valence complex of ruthenium Angew. Chem. Int. Ed. 47 503

    CAS  Google Scholar 

  15. D’Alessandro D M and Keene F R 2006 Current trends and future challenges in the experimental, theoretical and computational analysis of intervalence charge transfer (IVCT) transitions Chem. Soc. Rev. 35 424

    PubMed  Google Scholar 

  16. Kaim W, Klein A and Glöckle M 2000 Exploration of Mixed-Valence Chemistry: Inventing New Analogues of the Creutz-Taube Ion Acc. Chem. Res. 33 755

    CAS  PubMed  Google Scholar 

  17. Glover S D and Kubiak C P 2011 Persistence of the three-state description of mixed valency at the localized-to-delocalized transition J. Am. Chem. Soc. 133 8721

    CAS  PubMed  Google Scholar 

  18. Robin M B and Day P 1968 Mixed Valence Chemistry-A Survey and Classification Adv. Inorg. Chem. Radiochem. 10 247

    Google Scholar 

  19. Glöckle M, Kaim W, Klein A, Roduner E, Hübner G, Záliš S, van Slageren J, Renz F and Gütlich P 2001 The Stable Diiron(2.5) Complex Ion [(NC)5Fe(μ-tz)Fe(CN)5]5-, tz = 1,2,4,5-Tetrazine, and Its Neighboring Oxidation States Inorg. Chem. 40 2256

    PubMed  Google Scholar 

  20. Creutz C 1983 Mixed valence complexes of d5-d6 metal centers Prog. Inorg. Chem. 30 1

    CAS  Google Scholar 

  21. Kaim W 2011 Manifestations of Non-innocent Ligand Behavior Inorg. Chem. 50 9752

    CAS  PubMed  Google Scholar 

  22. Kaim W 2001 ESR Spectroscopy of Inorganic and Organometallic Radicals in Electron Transfer in Chemistry V Balzani (Ed.) (Weinheim: Wiley-VCH) Vol. 2 p. 976

  23. Kaim W and Lahiri G K 2007 Unconventional Mixed-Valent Complexes of Ruthenium and Osmium Angew. Chem. Int. Ed. 46 1778

    CAS  Google Scholar 

  24. Weil J A and Bolton J R 2007 Electron Paramagnetic Resonance 2nd edn. (Hoboken: Wiley)

    Google Scholar 

  25. Autschbach J 2012 Perspective: Relativistic effects J. Chem. Phys. 136 150902

    PubMed  Google Scholar 

  26. Ernst S, Hänel P, Jordanov J, Kaim W, Kasack V and Roth E 1989 Stable Binuclear o- and p-Semiquinone Complexes of [Ru(bpy)2]2+. Radical Ion versus Mixed Valence Dimer Formulation J. Am. Chem. Soc. 111 1733

    CAS  Google Scholar 

  27. Maji S, Sarkar B, Mobin S M, Fiedler J, Urbanos F A, Jimenez-Aparicio R, Kaim W and Lahiri G K 2008 Valence State Alternatives in Diastereoisomeric Complexes [(acac)2Ru(μ-QL)Ru(acac)2]n (QL2- = 1,4-Dioxido-9,10-anthraquinone, n = +2,+1,0,-1,-2) Inorg. Chem. 47 5204

    CAS  PubMed  Google Scholar 

  28. Kamatchi T S, Mondal S, Scherer T, Bubrin M, Natarajan K and Kaim W 2017 Near IR Absorbing Organometallic Diruthenium Complex Intermediates: Evidence for Bridging Anthrasemiquinone Formation and against Mixed Valency Chem. Eur. J. 23 17810

    CAS  PubMed  Google Scholar 

  29. Kaim W and Fiedler J 2009 Spectroelectrochemistry: the best of two worlds Chem. Soc. Rev. 38 3373

    CAS  PubMed  Google Scholar 

  30. Kaim W 2001 Complexes with 2,2’-azobispyridine and related S-frame bridging ligands containing the azo function Coord. Chem. Rev. 219-221 463

    Google Scholar 

  31. Kasack V, Kaim W, Binder H, Jordanov J and Roth E 1995 When is an Odd-Electron Dinuclear Complex a Mixed-Valent Species? Tuning of Ligand-to-Metal Spin Shifts in Diruthenium Complexes of Non-Innocent Dicarbonylhy-drazido Bis-Chelate Ligands Inorg. Chem. 34 1924

    CAS  Google Scholar 

  32. Jana R, Sarkar B, Bubrin D, Fiedler J and Kaim W 2010 Structure, electrochemistry and spectroscopy of a new diacylhydrazido-bridged diruthenium complex with a strongly near-infrared absorbing RuIIIRuII intermediate Inorg. Chem. Commun. 13 1160

    CAS  Google Scholar 

  33. Roy S, Sarkar B, Imrich H-G, Fiedler J, Záliš S, Jimenez-Aparicio R, Urbanos F A, Mobin S M, Lahiri G K and Kaim W 2012 Charged but Found Not Guilty: Innocence of the Suspect Bridging Ligands [RO(O)CNNC(O)OR]2- = L2- in [(acac)2Ru(μ-L)Ru(acac)2]n, n = +,0,-,2- Inorg. Chem. 51 9273

    CAS  PubMed  Google Scholar 

  34. Mondal S, Schwederski B, Frey W, Fiedler J, Záliš S and Kaim W 2018 At the Borderline between Metal-Metal Mixed Valency and a Radical Bridge Situation: Four Charge States of a Diruthenium Complex with a Redox-active Bis(mer-tridentate) Ligand Inorg. Chem. 57 3983

    CAS  PubMed  Google Scholar 

  35. Qi Y, Desjardins P and Wang Z Y 2002 Novel near-infrared active dinuclear ruthenium complex materials: Effects of substituents on optical attenuation J. Opt. A: Pure Appl. Opt. 4 S273

    CAS  Google Scholar 

  36. Wang Z Y, Zhang J, Wu X, Birau M, Yu G, Yu H, Qi Y, Desjardin P, Meng X, Gao J P, Todd E, Song N, Bai Y, Beaudin A M R and LeClair G 2004 Near-infrared absorbing organic materials Pure Appl. Chem. 76 1435

    CAS  Google Scholar 

  37. Xun S, LeClair G, Zhang J, Chen X, Gao J P and Wang Z Y 2006 Tuning the Electrical and Optical Properties of Dinuclear Ruthenium Complexes for Near Infrared Optical Sensing Org. Lett. 8 1697

    CAS  PubMed  Google Scholar 

  38. Xun S, Zhang J, Li X, Ma D and Wang Z Y 2008 Synthesis and near-infrared luminescent properties of some ruthenium complexes Synth. Met. 158 484

    CAS  Google Scholar 

  39. LeClair G and Wang Z Y 2009 Optical attenuation at the 1,550-nm wavelength in a reflective mode using electrochromic ruthenium complex film J. Solid State Electrochem. 13 365

    CAS  Google Scholar 

  40. Sarkar B, Patra S, Fiedler J, Sunoj R B, Janardanan D, Lahiri G K and Kaim W 2008 Mixed-Valent Metals Bridged by a Radical Ligand: Fact or Fiction Based on Structure-Oxidation State Correlations J. Am. Chem. Soc. 130 3532

    CAS  PubMed  Google Scholar 

  41. Záliš S, Sarkar B, Duboc C and Kaim W 2009 Evidence for the dimer-of-(mixed-valent dimers) configuration in tetranuclear {(μ4-TCNX)[Ru(NH3)5]4}8+, TCNX = TCNE and TCNQ, from DFT Calculations Chem. Monthly 140 765

    Google Scholar 

  42. Ansari M A, Mandal A, Beyer K, Paretzki A, Schwederski B, Kaim W and Lahiri G K 2017 Non-Innocence and mixed valency in tri- and tetranuclear ruthenium complexes of a heteroquinone bridging ligand Dalton Trans. 46 15589

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support from the Deutsche Forschungsgemeinschaft, EU (COST D35) and Fonds der Chemischen Industrie is gratefully acknowledged. Special thanks are due to Mrs. Angela Winkelmann for her contributions in preparing this article and to Drs. J. Fiedler and S. Záliš (J. Heyrovsky Institute, Prague) for continued cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Kaim.

Additional information

Special Issue on Materials Chemistry

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaim, W. Materials with electronic transitions in the near-infrared. J Chem Sci 131, 95 (2019). https://doi.org/10.1007/s12039-019-1664-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-019-1664-z

Keywords

Navigation