Skip to main content
Log in

Self-assembly and photoinduced electron transfer in a donor- \(\upbeta \)-cyclodextrin-acceptor supramolecular system\(^{\S }\)

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Equimolar amounts of native \(\upbeta \)-cyclodextrin (\({\varvec{\upbeta }}\)-CD), pyrene-linked adamantane (PYAD) and tert-butylpyromellitic diimide (PMDI) when dissolved in water self-assembled to form the supramolecular donor-acceptor system \(\mathbf{PYAD}{\sqsupset }{\varvec{\upbeta }}\)-\(\mathbf{CD}{\succ }\mathbf{PMDI}\). The high affinity of adamantane derivatives for inclusion binding in the \({\varvec{\upbeta }}\)-CD cavity and the propensity of PMDI to undergo rim-binding at the narrow rim of \(\upbeta \)-CD led to the formation of \(\mathbf{PYAD}{\sqsupset }{\varvec{\upbeta }}\)-\(\mathbf{CD}{\succ }{} \mathbf{PMDI}\). The ternary complex \(\mathbf{PYAD}{\sqsupset }{\varvec{\upbeta }}\)-\(\mathbf{CD}{\succ }{} \mathbf{PMDI}\) was thoroughly characterized using various spectroscopic techniques. \(\upbeta \)-CD performs three functions in the self-assembled complex: (1) encapsulate the adamantane unit and keep the pyrene (PY) moiety above the secondary rim, (2) rim-bind PMDI and keep it at the primary rim, and (3) act as a spacer between pyrene and PMDI. Thus, the ternary complex can function as a donor-spacer-acceptor system capable of undergoing photoinduced electron transfer (PET). Upon excitation of the pyrene moiety in \(\mathbf{PYAD}{\sqsupset }{\varvec{\upbeta }}\)-\(\mathbf{CD}{\succ }{} \mathbf{PMDI}\) an electron is transferred from the excited pyrene to the PMDI ground state. Steady state and time resolved fluorescence experiments were carried out to study the PET in \(\mathbf{PYAD}{\sqsupset }{\varvec{\upbeta }}\)-\(\mathbf{CD}{\succ }{} \mathbf{PMDI}\). Existence of the ternary system and PET processes taking place within it are further supported by laser flash photolysis experiments.

Graphical abstract \(\upbeta \)-CD assembles donor pyrene through inclusion binding and acceptor pyromellitic diimide through rim-binding. Fluorescence intensity and lifetime quenching suggested photoinduced electron transfer from pyrene to pyromellitic diimide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Scheme 3

Similar content being viewed by others

References

  1. Bottari G, Trukhina O, Ince M and Torres T 2012 Towards Artificial Photosynthesis: Supramolecular Donor-Acceptor Porphyrin and Phthalocyanine/Carbon Nanostructure Ensembles Coord. Chem. Rev. 256 2453

    Article  CAS  Google Scholar 

  2. D’Souza F and Ito O 2009 Supramolecular Donor – Acceptor Hybrids of Porphyrins/Phtalocyanines with Fullerenes/Carbon Nanotubes: Electron Transfer Sensing, Switching, and Catalytic Applications Chem. Commun. 4913

  3. Hasobe T, Fukuzumi S and Kamat P V 2006 Hierarchical Assembly of Porphyrins and Fullerenes for Solar Cells Interface 15 47

    CAS  Google Scholar 

  4. Das A, Jha A, Gera R and Dasgupta J 2015 Photoinduced Charge Transfer State Probes the Dynamic Water Interactions with Metal – Organic Nanocages J. Phys. Chem. C 119 21234

    Article  CAS  Google Scholar 

  5. Das A and Ghosh S 2014 Supramolecular Assemblies by Charge – Transfer Interactions between Donor and Acceptor Chromophores Angew. Chem. Int. Ed. 53 2038

    Article  CAS  Google Scholar 

  6. D’Souza F, Amin A, N, El-Kouhly M E, Subbaiyan N K, Zandler M E and Fukuzumi S 2012 Control over Photoinduced Energy and Electron Transfer in Supramolecular Polyads of Covalently linked azaBODIPY-Bisporphyrin ‘Molecular Clip’ Hosting Fullerene J. Am. Chem. Soc. 134 654

    Article  Google Scholar 

  7. Bikram C K C, Subbaiyan N K and D’Souza F 2012 Supramolecular Donor – Acceptor Assembly Derived from Tetracarbazole – Zinc Phthalocyanine Coordinated to Fullerene: Design, Synthesis, Photochemical, and Photoelectrochemical Studies J. Phys. Chem. C 116 11964

    Article  CAS  Google Scholar 

  8. Takai A, Chkounda M, Eggenspiller A, Gros C P, Lachkar M, Barbe J-M and Fukuzumi S 2010 Efficient Photoinduced Electron Transfer in a Porphyrin Tripod-Fullerene Supramolecular Complex via \(\uppi {\text{- }}\uppi \) interactions in Nonpolar Media J. Am. Chem. Soc. 132 4477

    Article  CAS  Google Scholar 

  9. Honda T, Nakanishi T, Ohkubo K, Kojima T and Fukuzumi S 2010 Structure and Photoinduced Electron Transfer Dynamics of a Series of Hydrogen-Bonded Supramolecular Complexes Composed of Electron Donors and a Saddle-Distorted Diprotonated Porphyrin J. Am. Chem. Soc. 132 10155

    Article  CAS  Google Scholar 

  10. Gayathri S S, Wielopolski M, Perez E M, Fernandez G, Sanchez L, Viruela R, Orti E, Guldi D M and Martin N 2009 Discrete Supramolecular Donor–Acceptor Complexes Angew. Chem. Int. Ed. 48 815

    Article  CAS  Google Scholar 

  11. Kira A, Umeyama T, Matano Y, Yoshida K, Isoda S, Park J K, Kim D and Imahori H 2009 Supramolecular Donor-Acceptor Heterojunctions by Vertical Stepwise Assembly of Porphyrins and Coordination-Bonded Fullerene Arrays for Photocurrent Generation J. Am. Chem. Soc. 131 3198

    Article  CAS  Google Scholar 

  12. Kuramochi Y, Satake A, Itou M, Ogawa K, Araki Y, Ito O and Kobuke Y 2008 Light-Harvesting Supramolecular Porphyrin Macrocycle Accommodating a Fullerene–Tripodal Ligand Chem. Eur. J. 14 2827

    Article  CAS  Google Scholar 

  13. Wang Y B and Lin Z Y 2003 Supramolecular Interactions between Fullerenes and Porphyrins J. Am. Chem. Soc. 125 6072

    Article  CAS  Google Scholar 

  14. D’Souza F, Deviprasad G R, Zandler M E, Hoang V T, Klykov A, VanStipdonk M, Perera A, El-Khouly M E, Fujitsuka M and Ito O 2002 Spectroscopic, Electrochemical, and Photochemical Studies of Self-Assembled via Axial Coordination Zinc Porphyrin-Fulleropyrrolidine Dyads J. Phys. Chem. A 106 3243

    Article  Google Scholar 

  15. Crini G A 2014 History of Cyclodextrin Chem. Rev. 114 10940

    Article  CAS  Google Scholar 

  16. Chen G and Jiang M 2011 Cyclodextrin – Based Inclusion Complexation Bridging Supramolecular Chemistry and Macromolecular Self-Assembly Chem. Soc. Rev. 40 2254

    Article  CAS  Google Scholar 

  17. Rekharsky M V and Inoue Y 1998 Complexation Thermodynamics of Cyclodextrins Chem. Rev. 98 1875

    Article  CAS  Google Scholar 

  18. Al-Burtomani S K S and Suliman F O 2018 Experimental and theoretical study of the inclusion complexes of epinephrine with \(\upbeta \)-cyclodextrin, 18-crown-6 and cucurbit[7]uril New J. Chem. 42 5785

    Article  CAS  Google Scholar 

  19. Al-Dubaili N, El-Tarabily, K and Saleh N 2018 Host-guest complexes of imazalil with cucurbit[8]uril and \(\upbeta \)-cyclodextrin and their effect on plant pathogenic fungi Sci. Rep. 8 2839

    Article  Google Scholar 

  20. Li H, Li F, Zhang B, Zhou X, Yu F and Sun L 2015 Visible Light – Driven Water Oxidation Promoted by Host – Guest Interaction between Photosensitizer and Catalyst with a High Quantum Efficiency J. Am. Chem. Soc. 137 4332

    Article  CAS  Google Scholar 

  21. Dryza V and Bieske E J 2015 Electron Injection and Energy Transfer Properties of Spiropyran – Cyclodextrin Complexes Coated onto Metal Oxide Nanoparticles: Toward Photochromic Light Harvesting J. Phys. Chem. C 119 14076

    Article  CAS  Google Scholar 

  22. Zhang Y-M, Chen Y, Zhuang R-J and Liu Y 2011 Supramolecular Architectures of Tetrathiafulvalene – bridged Bis (\(\upbeta \) – cyclodextrin) with Porphyrin and its Electron Transfer Behaviors Photochem. Photobiol. Sci. 10 1393

    Article  CAS  Google Scholar 

  23. Fukuhara G, Mori T and Inoue Y 2009 Competitive Enantiodifferentiating Anti-Markovnikov Photoaddition of Water and Methanol to 1,1 – Diphenylpropene Using A Sensitizing Cyclodextrin Host J. Org. Chem. 74 6714

    Article  CAS  Google Scholar 

  24. Freeman R, Finder T, Bahshi L and Willner I 2009 \(\upbeta \) – Cyclodextrin – Modified CdSe/ZnS Quantum Dots for Sensing and Chiroselective Analysis Nano. Lett. 9 2073

    Article  CAS  Google Scholar 

  25. Liang P, Zhang H-Y, Yu Z-L and Liu Y 2008 Solvent – Controlled Photoinduced – Electron Transfer between Porphyrin and Carbon Nanotubes J. Org. Chem. 73 2163

    Article  CAS  Google Scholar 

  26. Ghosh S, Mondal S K, Sahu K and Bhattacharyya K 2006 Ultrafast Electron Transfer in a Nanocavity. Dimethylaniline to Coumarin Dyes in Hydroxypropyl - \(\upgamma \) - Cyclodextrin J. Phys. Chem. A 110 13139

    Article  CAS  Google Scholar 

  27. Deng W, Onji T, Yamaguchi H, Ikeda N and Harada A 2006 Competitive Photoinduced Electron Transfer by the Complex Formation of Porphyrin with Cyclodextrin bearing Viologen Chem. Commun. 40 4212

    Article  Google Scholar 

  28. Wang Y-H, Zhu M-Z, Ding X-Y, Ye J-P, Liu L and Guo Q-X 2003 Photoinduced Electron Transfer between Mono-6-p-nitrobenzoyl-\(\upbeta \)-Cyclodextrin and Adamantanamine-Cn-porphyrins J. Phys. Chem. B 107 14087

    Article  CAS  Google Scholar 

  29. Haider J M, Williams R. M, De Cola L and Pikramenou Z 2003 Vectorial Control of Energy-Transfer Processes in Metallocyclodextrin Heterometallic Assemblies Angew. Chem. Int. Ed. 42 1830

    Article  CAS  Google Scholar 

  30. Balan B and Gopidas K R 2007 An Anthracene-Appended \(\upbeta \)-Cyclodextrin-Based Dyad: Study of Self- Assembly and Photoinduced Electron-Transfer Processes Chem. Eur. J. 13 5173

    Article  CAS  Google Scholar 

  31. Balan B and Gopidas K R 2006 Photoinduced Electron Transfer in \(\upalpha \)-Cyclodextrin-Based Supramolecular Dyads: A Free-Energy-Dependence Study Chem. Eur. J. 12 6701

    Article  CAS  Google Scholar 

  32. Balan B, Sivadas D L and Gopidas K R 2007 Interaction of Pyromellitic Diimide Derivatives with \(\upbeta \)-Cyclodextrin and Anthracene-Appended Beta-Cyclodextrin: Rimbinding vs Inclusion Complexation Org. Lett. 9 2709

    Article  CAS  Google Scholar 

  33. Krishnan R, Rakhi A M and Gopidas K R 2012 \(\upbeta \) Cyclodextrin-Pyromellitic Diimide Complexation. Conformational Analysis of Binary and Ternary Complex Structures by Induced Circular Dichroism and 2D NMR Spectroscopies J. Phys. Chem. C 116 25004

    Article  CAS  Google Scholar 

  34. Krishnan R and Gopidas K R 2011 \(\upbeta \)-Cyclodextrin as an End to End Connector J. Phys. Chem. Lett . 2 2094

    Article  CAS  Google Scholar 

  35. Kola S, Kim J H, Ireland R, Yeh M-L, Smith K, Guo W and Katz H E 2013 Pyromellitic Diimide – Ethylene-based Homopolymer Film as an N-Channel Organic Field-Effect Transistor Semiconductor ACS Macro. Lett. 2 664

    Article  CAS  Google Scholar 

  36. Guo X and Watson M D 2011 Pyromellitic Diimide-Based Donor – Acceptor Poly(phenyleneethynylene)s Macromolecules 44 6711

    Article  CAS  Google Scholar 

  37. Zheng Q, Huang J, Sarjeant A and Katz H E 2008 Pyromellitic Diimides: Minimal Cores for High Mobility n-Channel Transistor Semiconductors J. Am. Chem. Soc. 130 14410

    Article  CAS  Google Scholar 

  38. Lockard J E and Wasielewski M R 2007 Intramolecular Electron Transfer within a Covalent, Fixed-Distance Donor-Acceptor Molecule in an Ionic Liquid J. Phys. Chem. B 111 11638

    Article  CAS  Google Scholar 

  39. Lukas A S, Zhao Y, Miller S E and Wasielewski M R 2002 Biomimetic Electron Transfer using Low Energy Excited States: A Green Perylene-Based Analogue of Chlorophyll a J. Phys. Chem. B 106 1299

    Article  CAS  Google Scholar 

  40. Lukas E S, Miller S E and Wasielewski M R 2000 Femtosecond Optical Switching of Electron Transport Direction in Branched Donor-Acceptor Arrays J. Phys. Chem. B 104 931

    Article  CAS  Google Scholar 

  41. Sessler J L, Brown C T, O’Connor D, Springs S L, Wang R, Sathiosatham M and Hirose T 1998 A Rigid Chlorin-Naphthalene Diimide Conjugate. A Possible New Noncovalent Electron Transfer Model System J. Org. Chem. 63 7370

    Article  CAS  Google Scholar 

  42. Wiederrecht G P, Niemczyk M P, Svec W A and Wasielewski M R 1996 Ultrafast Photoinduced Electron Transfer in a Chlorophyll-Based Triad: Vibrationally Hot Ion Pair Intermediates and Dynamic Solvent Effects J. Am. Chem. Soc. 118 81

    Article  CAS  Google Scholar 

  43. Lee O P, Yiu A T, Beaujuge P M, Woo C H, Holcombe T W, Millstone J E, Douglas J D, Chen M S and Fréchet J M J 2011 Efficient Small Molecule Bulk Heterojunction Solar Cells with High Fill Factors via Pyrene-Directed Molecular Self-Assembly Adv. Mater. 23 5359

    Article  CAS  Google Scholar 

  44. Maligaspe E, Sandanayaka A S D, Hasobe T, Ito O and D’Souza F 2010 Sensitive Efficiency of Photoinduced Electron Transfer to Band Gaps of Semiconductive Single-Walled Carbon Nanotubes with Supramolecularly Attached Zinc Porphyrin Bearing Pyrene Glues J. Am. Chem. Soc. 132 8158

    Article  CAS  Google Scholar 

  45. Anh N V, Schlosser F, Groeneveld M M, van Stokkum I H M, Wurthner F and Williams R M 2009 Photoinduced Interactions in a Pyrene-Calix[4]arene-Perylene Bisimide Dye System: Probing Ground-State Conformations with Excited-State Dynamics of Charge Separation and Recombination J. Phys. Chem. C 113 18358

    Article  Google Scholar 

  46. Narita M, Mima S, Ogawa N and Hamada F 2001 Fluorescent Molecular Sensory System Based on Bis Pyrene-Modified \(\upgamma \)-Cyclodextrin Dimer for Steroids and Endocrine Disruptors Anal. Sci. 17 379

    Article  CAS  Google Scholar 

  47. Murakami H, Hohsaka T, Asshizuka Y and Sisido M 1998 Site-Directed Incorporation of p-Nitrophenylalanine into Streptavidin and Site-to-Site Photoinduced Electron Transfer from a Pyrenyl Group to a Nitrophenyl Group on the Protein Framework J. Am. Chem. Soc. 120 7520

    Article  CAS  Google Scholar 

  48. Ueno A, Suzuki I and Osa T 1989 Association Dimers, Excimers, and Inclusion Complexes of Pyrene-Appended \(\upgamma \)-Cyclodextrins J. Am. Chem. Soc. 111 6391

    Article  CAS  Google Scholar 

  49. Gelb R I, Schwartz L M and Laufer D A 1984 Adamantan-1-ylamine and Adamantan-1-ylamine Hydrochloride Complexes with Cycloamyloses J. Chem. Soc., Perkin Trans. 2 15

    Article  Google Scholar 

  50. Briggner L-E, Ni X -R, Tempesti F and Wadsö I 1986 Microcalorimetric Titration of \(\upbeta \)-Cyclodextrin with Adamantane-1-Carboxylate Thermochim. Acta 109 139

    Article  CAS  Google Scholar 

  51. Hallén D, Schön A, Shehatta I and Wadsö I 1992 Microcalorimetric Titration of \(\upalpha \)-Cyclodextrin with some Straight-chain Alkan-1-ols at 288.15, 298.15 and 308.15 K J. Chem. Soc., Faraday Trans. 88 2859

    Article  Google Scholar 

  52. Rekharsky M V, Mayhew M P, Goldberg R N, Ross P D, Yamashoji Y and Inoue Y 1997 Thermodynamic and Nuclear Magnetic Resonance Study of the Reactions of \(\upalpha \)- and \(\upbeta \)-Cyclodextrin with Acids, Aliphatic Amines, and Cyclic Alcohols J. Phys. Chem. B 101 87

    Article  CAS  Google Scholar 

  53. Ross P D and Rekharsky M V 1996 Thermodynamics of Hydrogen Bond and Hydrophobic Interactions in Cyclodextrin Complexes Biophys. J. 71 2144

    Article  CAS  Google Scholar 

  54. Breslow R, Czamiecki M F, Emert J and Hamaguchi H 1980 Improved Acylation Rates within Cyclodextrin Complexes from Flexible Capping of Cyclodextrin and from Adjustment of Substrate Geometry J. Am. Chem. Soc. 102 762

    Article  CAS  Google Scholar 

  55. Emert J and Breslow R 1975 Modification of Cavity of Beta-Cyclodextrin by Flexible Capping J. Am. Chem. Soc. 97 670

    Article  CAS  Google Scholar 

  56. Schneider H J, Hacket F and Rudiger V 1998 NMR Studies of Cyclodextrin and Cyclodextrin Complexes Chem. Rev. 98 1755

    Article  CAS  Google Scholar 

  57. Rehm D and Weller A 1970 Kinetics of Fluorescence Quenching by Electron and H-atom Transfer Isr. J. Chem. 8 259

    Article  CAS  Google Scholar 

  58. Rehm D and Weller A 1969 Thermodynamics of the Formation of Excited EDA (electron donor-acceptor) Complexes Ber. Bunsenges. Phys. Chem. 73 834

    CAS  Google Scholar 

  59. Fagnoni M, Mella M and Albini A 1998 Electron-Transfer-Photosensitized Conjugate Alkylation J. Org. Chem. 63 4026

    Article  CAS  Google Scholar 

  60. de Rege P J F, Williams S A and Therien M J 1995 Direct Evaluation of Electronic Coupling Mediated by Hydrogen Bonds: Implications for Biological Electron Transfer Science 269 1409

    Article  Google Scholar 

  61. Turro N J, Ramamurthy V and Scaiano J C Principles of Molecular Photochemistry: An Introduction (Sausalito, California: University Science Books) p. 471

  62. Sessler J L, Wang B and Harriman A 1993 Long-range Photoinduced Electron Transfer in an Associated but Non-Covalently linked Photosynthetic Model System J. Am. Chem. Soc. 115 10418

    Article  CAS  Google Scholar 

  63. Pérez-Prieto J, Pérez L P, González-Béjar M, Mirandab M A and Stiriba S-E 2005 Pyrene-Benzoylthiophene Bichromophores as Selective Triplet Photosensitizers Chem. Commun. 5569

  64. Raytchev M, Pandurski E, Buchvarov I, Modrakowski C and Fiebig T 2003 Bichromophoric Interactions and Time-Dependent Excited State Mixing in Pyrene Derivatives. A Femtosecond Broad-Band Pump-Probe Study J. Phys. Chem. A 107 4592

    Article  CAS  Google Scholar 

  65. Rak S F, Jozefiak T H and Miller L L 1990 Electrochemistry and Near-Infrared Spectra of Anion Radicals Containing Several Imide or Quinone Groups J. Org. Chem. 55 4794

    Article  CAS  Google Scholar 

  66. Hara M, Tojo S, Kawai K and Majima T 2004 Formation and Decay of Pyrene Radical Cation and Pyrene Dimer Radical Cation in the Absence and Presence of Cycodextrins during Resonant Two-Photon Ionization of Pyrene and Sodium 1-Pyrene Sulfonate Phys. Chem. Chem. Phys. 6 3215

    Article  CAS  Google Scholar 

  67. Naqvi K R and Melø T B 2006 Reduction of Tetranitromethane by Electronically Excited Aromatics in Acetonitrile: Spectra and Molar Absorption Coefficients of Radical Cations of Anthracene, Phenanthrene and Pyrene Chem. Phys. Lett. 428 83

    Article  CAS  Google Scholar 

  68. Cho D W, Fujituska M, Yoon U C and Majima T 2008 Intermolecular Photoinduced Electron Transfer of 1,8-Naphthalimides in Protic Polar Solvents Phys. Chem. Chem. Phys. 10 4393

    Article  CAS  Google Scholar 

  69. Parker V D, Tilset M and Hammerich O 1987 Aromatic Hydrocarbon Dianions: Super Bases. Anthracene Anion Radical and Dianion Conjugate Acid PKa values J. Am. Chem. Soc. 109 7906

    Article  Google Scholar 

  70. Funston A M, Lymar S V, Price B S, Czapski G and Miller J R 2007 Rate and Driving Force for Protonation of Aryl Radical Anions in Ethanol J. Phys. Chem. B 111 6895

    Article  CAS  Google Scholar 

  71. Kira A, Arai S and Imamura M. 1971 Pyrene Dimer Cation as Studies by Pulse Radiolysis J. Chem. Phys. 34 4890

    Article  Google Scholar 

  72. Rodgers M A J 1972 Nanosecond pulse radiolysis of acetone. Kinetic and thermodynamic properties of some aromatic radical cations J. Chem. Soc. Farady Trans. 1 68 1278

    Article  CAS  Google Scholar 

  73. Mori Y, Shinoda H, Nakano T and Kitagawa T 2002 Formation and Decay Behaviors of Laser-Induced Transient Species from Pyrene Derivatives 1. Spectral Discrimination and Decay Mechanisms in Aqueous Solution J. Phys. Chem. A 106 11743

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank DAE-BRNS (No. 2007/37/37/BRNS), and CSIR for financial support. R.K. and S. B. K. are grateful to CSIR for fellowships. This is contribution number NIIST-PPG 348.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karical Raman Gopidas.

Additional information

$$^{\S }$$ § Dedicated to Professor M. V. George on the occasion of his 90 $$^\mathrm{th}$$ th Birth Anniversary.

Special Issue on Photochemistry, Photophysics and Photobiology

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1473 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, R., Krishnan, S.B., Balan, B. et al. Self-assembly and photoinduced electron transfer in a donor- \(\upbeta \)-cyclodextrin-acceptor supramolecular system\(^{\S }\). J Chem Sci 130, 134 (2018). https://doi.org/10.1007/s12039-018-1535-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1535-z

Keywords

Navigation