Skip to main content

Advertisement

Log in

\(\hbox {H}^{+} + \hbox {O}_2\) system revisited: four-state quasidiabatic potential energy surfaces and coupling potentials

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The global adiabatic and quasidiabatic potential energy surfaces for the ground and first three excited (\(1-4\, ^3\text {A}^{\prime \prime }\)) electronic states of \(\hbox {H}^{+} +\hbox {O}_2\) system are reported on a finer grid points in the Jacobi coordinates using Dunning’s cc-pVTZ basis set and internally contracted multi-reference (single and double) configuration interaction method. Ab initio procedures have been used to compute the corresponding quasidiabatic surfaces and radial coupling potentials which are relevant for the dynamical studies of inelastic vibrational excitation and charge transfer processes. Nonadiabatic couplings arising out of relative motion of proton and the vibrational motions of \(\hbox {O}_2\) between the adiabatic electronic states have also been analyzed.

Graphical abstract

Adiabatic and quasidiabatic potential energy surfaces have been constructed using ab initio procedure for the lowest four 1-4 \(^{3}A''\) electronic states of \(\hbox {H}^{+}\) + \(\hbox {O}_{2}\) collision system. The computed quasidiabatic surfaces and coupling potentials would be helpful in understanding the collision dynamics of inelastic and charge transfer processes in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Niedner-Schatteburg G and Toennies J P 1992 Proton energy loss spectroscopy as a state-to-state probe of molecular dynamics Adv. Chem. Phys. 82 553

    CAS  Google Scholar 

  2. Noll M and Toennies J P 1986 Vibrational state resolved measurements of differential cross sections for \(\text{ H }^+\) + \(\text{ O }_2\) charge transfer collisions J. Chem. Phys. 85 3313

    Article  CAS  Google Scholar 

  3. Domcke W, Yarkony D R and Köppel H 2004 Conical intersections: Electronic structure dynamics and spectroscopy (Singapore: World Scientific)

  4. Landau L D 1932 Zur theorie der energieubertragung. ii Phys. Z. Sowjetunion 2 46

    CAS  Google Scholar 

  5. Zener C 1932 Non-adiabatic crossing of energy levels Proc. R. Soc. London: Ser. A 137 696

    Article  Google Scholar 

  6. Stuckelberag E C G 1932 Theory of Inelastic Collisions between Atoms Helv. Phys. Acta 5 369

    Google Scholar 

  7. van Lenthe J H and Ruttink P J A 1978 Ab initio calculations on the three lowest states of \(\text{ HO }_2^+\) Chem. Phys. Lett. 56 20

    Article  Google Scholar 

  8. Raine G P and Schaefer III H F 1984 The HO\(_2^+\) molecular ion. Geometrical structure and vibrational frequencies J. Chem. Phys. 80 319

    Article  CAS  Google Scholar 

  9. Xavier F G D, Martínez-González M and Varandas A J C 2018 Accurate ab initio potential for \(\text{ HO }_2^+\) : CBS extrapolated energies and direct-fit diatomic curves Chem. Phys. Lett. 691 421

    Article  Google Scholar 

  10. Gianturco F A and Gierz U and Toennies J P 1981 Anomalous vibrational excitation of \(\text{ O }_2\) in collisions with protons at 10 eV when compared with \(\text{ N }_2\) CO and NO J. Phys. B: At. Mol. Phys. 14 667

    Article  CAS  Google Scholar 

  11. Staemmler V and Gianturco F A 1985 Adiabatic SCF potential energy curves relevant to proton-oxygen molecular collisions Int. J. Quant. Chem. 28 553

    Article  CAS  Google Scholar 

  12. Grimbert D, Lassier-Givers B and Sidis i V 1988 Model potentials and related diabatic states for the H\(^+\) + O\(_2\) collisional system Chem. Phys. 124 187

  13. Schneider, Zülicke L, DiGiacomo F, Gianturco F A, Paidarová I and Polák R 1988 DIM model calculations for (O\(_2\)H\(^+\)) Interaction potentials Chem. Phys. 128 311

    Article  CAS  Google Scholar 

  14. Sidis V, Grimbert D, Sizun M and Baer M 1989 Quantal IOS calculations of differential cross sections for vibrational excitations and vibronic charge transfer in H\(^+\) + O\(_2\) collisions Chem. Phys. Lett. 163 19

    Article  CAS  Google Scholar 

  15. Gianturco F A, Palma A, Semprini E, Stefani F and Baer M 1990 Coupled quantum treatment of vibrationally inelastic and vibronic charge transfer in proton-O\(_2\) collisions Phys. Rev. A 42 3926

    Article  CAS  Google Scholar 

  16. Schinke R and McGuire P 1978 Combined rotationally sudden and vibrationally exact quantum treatment of proton-H\(_2\) collisions Chem. Phys. 31 391

    Article  CAS  Google Scholar 

  17. Saieswari A and Kumar S 2008 Ab initio potential energy surfaces and nonadiabatic collision dynamics in H\(^+\) + O\(_2\) system J. Chem. Phys. 128 154325

  18. Simah D, Hartke B and Werner H -J 1999 Photodissociation dynamics of H\(_2\)S on new coupled ab initio potential energy surface J. Chem. Phys. 111 4523

    Article  CAS  Google Scholar 

  19. George D X and Kumar S 2010 Ab initio adiabatic and quasidiabatic potential energy surfaces of lowest four electronic states of the \(\text{ H }^{+} +\text{ O }_2\) system J. Chem. Phys. 133 164304

    Article  Google Scholar 

  20. Mahapatra S 2009 Excited electronic states and nonadiabatic effects in contemporary chemical dynamics Acc. Chem. Res. 42 1004

    Article  CAS  Google Scholar 

  21. Yarkony D R 2011 Nonadiabatic quantum chemistry – past, present and future Chem. Rev. 112 481

    Article  Google Scholar 

  22. Tully J C 2012 Perspective: Nonadiabatic dynamics theory J. Chem. Phys. 137 22A301

    Article  Google Scholar 

  23. Smith F T 1969 Diabatic and adiabatic representations for atomic collision problems Phys. Rev. 179 111

    Article  Google Scholar 

  24. Mead A and Truhlar D 1982 Conditions for the definition of a strictly diabatic electronic basis for molecular systems J. Chem. Phys. 77 6090

    Article  CAS  Google Scholar 

  25. Werner H -J and Meyer W 1981 MCSCF study of the avoided curve crossing of the two lowest \(^1\Sigma ^+\) states of LiF J. Chem. Phys. 74 5802

    Article  CAS  Google Scholar 

  26. Köppel H, Domcke W and Cederbaum L S 1984 Multimode molecular dynamics beyond the Born Oppenheimer approximation Adv. Chem. Phys. 57 59

    Google Scholar 

  27. Heumann B Weide K, Düren R and Schinke R 1993 Nonadiabatic effects in the photodissociation of H\(_{2}\)S in the first absorption band: An ab initio study J. Chem. Phys. 98 5508

    Article  CAS  Google Scholar 

  28. Heumann B and Schinke R 1994 Emission spectroscopy of dissociating \(\text{ H }_2\)S: Influence of nonadiabatic coupling J. Chem. Phys. 101 7488

    Article  CAS  Google Scholar 

  29. Sidis V 1992 Diabatic potential energy surfaces for charge-transfer processes Adv. Chem. Phys. 82 73

    CAS  Google Scholar 

  30. Pacher T, Cederbaum L S and Köppel H 1993 Adiabatic and Quasidiabatic States in a Gauge Theoretical Framework Adv. Chem. Phys. 84 293

    CAS  Google Scholar 

  31. Romero T, Aguilar A and Gadea F X 1999 Towards the ab initio determination of strictly diabatic states, study for (NaRb)\(^+\) J. Chem. Phys. 110 6219

    Article  CAS  Google Scholar 

  32. Nakamura H and Truhlar D G 2001 The direct calculation of diabatic states based on configurational uniformity J. Chem. Phys. 115 10353

    Article  CAS  Google Scholar 

  33. Baer M 2002 The Electronic Non-Adiabatic Coupling Term in Molecular System: A Theoretical Approach Adv. Chem. Phys. 124 39

    CAS  Google Scholar 

  34. Baer M 2002 Introduction to the theory of electronic non-adiabatic coupling terms in molecular systems Phys. Rep. 358 75

    Article  CAS  Google Scholar 

  35. Child M S 2002 Early Perspectives on Geometric Phase Adv. Chem. Phys. 124 1

    CAS  Google Scholar 

  36. Worth G A and Robb M A 2002 Applying Direct Molecular Dynamics to Non-Adiabatic Systems Adv. Chem. Phys. 124 355

    CAS  Google Scholar 

  37. Adhikari S and Billing G D 2002 Non-Adiabatic Effects in Chemical Reaction: Extended Born-Oppenheimer Equations and Its Applications Adv. Chem. Phys. 124 143

    CAS  Google Scholar 

  38. Vibok A, Halasz G J, Vertesi T, Suhai S, Baer M and Toennies J P 2003 Ab initio conical intersections for the Na + H\(_2\) system: A four-state study J. Chem. Phys. 119 6588

    Article  CAS  Google Scholar 

  39. General Discussion 2004 Faraday Discuss. 127 81

    Article  Google Scholar 

  40. Köppel H 2004 Regularized diabatic states and quantum dynamics on intersecting potential energy surfaces Faraday Discuss. 127 35

    Article  Google Scholar 

  41. Baer M, Vertesi T, Halasz G J, Vibok A and Suhai S 2004 On diabatization and the topological D-matrix: Theory and numerical studies of the H + H\(_2\) system and the C\(_2\)H\(_2\) molecule Faraday Discuss. 127 337

    Article  CAS  Google Scholar 

  42. Baragan P, Errea L F, Macias A, Mendez L, Rabadan I, Riera A, Lucas J M and Aguilar A 2004 Study of ab initio molecular data for inelastic and reactive collisions involving the H\(_3^+\) quasimolecule J. Chem. Phys. 121 11629

    Article  Google Scholar 

  43. Jasper A W, Zhu C, Nangia S and Truhlar D G 2004 Introductory lecture: Nonadiabatic effects in chemical dynamics Faraday Discuss. 127 1

    Article  CAS  Google Scholar 

  44. Vertesi T, Bene E, Vibok A, Halasz G J and Baer M 2005 N-state adiabatic-to-diabatic transformation angle: Theory and application J. Phys. Chem. A 109 3476

    Article  CAS  Google Scholar 

  45. Sarkar B and Adhikari S 2008 Curl condition for a four-state Born-Oppenheimer system employing the Mathieu equation J. Phys. Chem. A 112 9868

    Article  CAS  Google Scholar 

  46. Saieswari A and Kumar S 2007 Ab initio study of H\(^+\) + H\(_2\): Elastic/inelastic and charge transfer processes Chem. Phys. Lett. 449 358

    Article  CAS  Google Scholar 

  47. Saieswari A and Kumar S 2007 Vibrational inelastic and charge transfer processes in H\(^+\) + H\(_2\) system: An ab initio study J. Chem. Phys. 127 214304

  48. Saieswari A and Kumar S 2008 Elastic/inelastic and charge transfer collisions of H\(^+\) + H\(_2\) at collision energies of 4.67, 6, 7.3, 10 eV J. Chem. Phys. 128 064301

  49. Mukherjee S Mukhopadhyay D and Ashikari S 2014 Conical intersections and diabatic potential energy surfaces for the three lowest electronic states of \(\text{ H }_3^+\) J. Chem. Phys. 141 204306

  50. Ghosh S, Mukherjee S, Mukherjee B, Mandal S, Sharma R, Choudhury P and Adhikari S 2017 Beyond Born-Oppenheimer theory for ab initio constructed diabatic potential energy surfaces of singlet \(\text{ H }_3^+\) to study reaction dynamics using coupled 3D time-dependent wave packet approach J. Chem. Phys. 147 074105

    Article  Google Scholar 

  51. Domcke W and Woywood 1993 Direct construction of diabatic states in the CASSF approach. Application to the conical intersection of the \(^1{\rm A} _2\) and \(^1{\rm A} _1\) excited states of ozone Chem. Phys. Lett. 226 257

  52. Pacher T, Cederbaum L S and Köppel H 1988 Approximately diabatic states from block diagonalization of the electronic Hamiltonian J. Chem. Phys. 89 7367

    Article  CAS  Google Scholar 

  53. Werner H-J, Knowles P J, Knizia G, Manby F R, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar K R, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd A W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklass A, O’Neill D P, Palmieri P, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone A J, Tarroni R, Thorsteinsson T, Wang M and Wolf A MOLPRO, version 2010.1, a package of ab initio programs

  54. Werner H -J and Knowles P J 1988 An efficient internally contracted multi configuration-reference configuration interaction method Adiabatic and diabatic potential energy surfaces for collisions of CN \(\left(X ^2\Sigma ^+, A\, ^2\Pi \right)\) with He J. Chem. Phys. 89 5803i

    Article  Google Scholar 

  55. Knowles P J and Werner H -J 1988 An efficient method for the evaluation of coupling coefficients in configuration interaction calculations Chem. Phys. Lett. 145 514

    Article  CAS  Google Scholar 

  56. Knowles P J and Werner H -J 1992 Internally contracted multiconfiguration-reference configuration interaction calculation for excited states Theor. Chim. Acta 84 95

    Article  CAS  Google Scholar 

  57. Dunning J T H 1989 Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen J. Chem. Phys. 90 1007

    Article  CAS  Google Scholar 

  58. Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules D. Constants of Diatomic Molecules (New York: D Van Nostrand)

    Google Scholar 

  59. Werner H -J and Knowles P J 1985 A second order multiconfiguration SCF procedure with optimum convergence J. Chem. Phys. 82 5053

    Article  Google Scholar 

  60. Knowles P J and Werner H -J 1985 An efficient second-order MCSCF method for long configuration expansions Chem. Phys. Lett. 115 259

    Article  CAS  Google Scholar 

  61. George F D X 2010 Nonadiabatic Dynamics on the Two Coupled Electronic PESs: The \(\text{ H }^+\)+ \(\text{ O }_2\) Systemns J. Phys. Chem. A 114 10357

    Google Scholar 

Download references

Acknowledgements

The generous computing support of PG Senapathy Center for Computing Resource of IIT Madras is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saheer, V.C., Kumar, S. \(\hbox {H}^{+} + \hbox {O}_2\) system revisited: four-state quasidiabatic potential energy surfaces and coupling potentials. J Chem Sci 130, 149 (2018). https://doi.org/10.1007/s12039-018-1531-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1531-3

Keywords

Navigation