Advertisement

Copper (cat) and phenylboronic acid mediated deformylative C-N coupling of isoindolinone-3-ols with formamides provide C(3) aminoisoindolinones

  • H Surya Prakash Rao
  • J Prabhakaran
  • Silambarasan Kanniyappan
  • A Veera Bhadra Rao
Regular Article
  • 127 Downloads

Abstract

Copper(I) iodide efficiently catalyzes deformylative C-N coupling of formamides and isoindolinone-3-ols to provide C(3) primary/secondary amine substituted isoindolinones. The transformation requires a stoichiometric amount of phenylboronic acid as a co-reactant. In the reaction, formamides act as the synthetic equivalent of primary/secondary amines. The method is amenable for the synthesis of a combinatorial library of medicinally relevant C(3) amino substituted isoindolinones.

Graphical Abstract

Copper(I) iodide efficiently catalyzes deformylative C-N coupling of formamides and isoindolinone-3-ols in presence of stoichiometric amount of phenylboronic acid (co-reactant) to provide C(3) primary/secondary amine substituted isoindolinones. Here, formamides act as synthetic equivalents of primary/secondary amines. Herein we report synthesis of a combinatorial library of medicinally relevant C(3) amino substituted isoindolinones.

Keywords

Isoindolinones copper catalysis deformylative C-N coupling phenylboronic acid 

Notes

Acknowledgements

H S P R thanks UGC, UGC-SAP, and DST-FIST for financial assistance and instrumental facilities. J P thanks PU and UGC, AVR thanks CSIR, and S.K thanks PU for fellowships. We thank CIF, Pondicherry University for recording some of the spectra.

Supplementary material

12039_2018_1474_MOESM1_ESM.pdf (4.6 mb)
Supplementary material 1 (pdf 4758 KB)

References

  1. 1.
    (a) Review: Speck K and Magauer T 2013 The chemistry of isoindole natural products Beilstein J. Org. Chem. 9 2048; (b) Scherlach K, Schuemann J, Dahse H M and Hertweck C 2010 Aspernidine A and B, prenylated isoindolinone alkaloids from the model fungus aspergillus nidulans J. Antibiot. 63 375; (c) Chen J, Huang P Q and Queneau Y 2009 Enantioselective synthesis of the R-enantiomer of the feeding deterrent (S)-ypaoamide J. Org. Chem. 74 7457; (d) Subbarayappa A and Patoliya P U 2009 An efficient method for the synthesis of 2, 3-dihydro-1H-isoindoles Indian J. Chem., Sect. B 48 545; (e) Lamblin M, Couture A, Deniau E and Grandclaudon P 2007 A concise first total synthesis of narceine imide Org. Biomol. Chem. 5 1466; (f) Belliotti T R, Brink WA, Kesten S R, Rubin J R, Wustrow D J, Zoski K T, Whetzel S Z, Corbin A E, Pugsley T A, Heffner T G and Wise L D 1998 Isoindolinone enantiomers having affinity for the dopamine D 4 receptor Bioorg. Med. Chem. Lett. 8 1499Google Scholar
  2. 2.
    (a) Review: Chen H P and Liu J K 2017 Secondary Metabolites from Higher Fungi In Progress in the Chemistry of Organic Natural Products A D Kinghorn, H Falk, S Gibbons and J Kobayash (Eds.) (Springer International Publishing) p.106; (b) Yin Y, Fu Q, Wu W, Cai M, Zhou X and Zhang Y 2017 Producing novel fibrinolytic isoindolinone derivatives in marine fungus stachybotrys longispora FG216 by the rational supply of amino compounds according to its biosynthesis pathway Mar. Drugs 15 214Google Scholar
  3. 3.
    Zhao J, Liu J, Shen Y, Tan Z, Zhang M, Chen R, Zhao J, Zhang D, Yu L and Dai J 2017 Stachybotrysams A–E, prenylated isoindolinone derivatives with anti-HIV activity from the fungus Stachybotrys chartarum Phytochemistry Lett. 20 289Google Scholar
  4. 4.
    (a) Li E, Jiang L, Guo L, Zhang H and Che Y 2008 Pestalachlorides A–C, antifungal metabolites from the plant endophytic fungus pestalotiopsis adusta Bioorg. Med. Chem. 16 7894; (b) Slavov N, Cvengroš J, Neudörfl J M and Schmalz H G 2010 Total synthesis of the marine antibiotic pestalone and its surprisingly facile conversion into pestalalactone and pestalachloride A Angew. Chem., Int. Ed. 49 7588Google Scholar
  5. 5.
    (a) Reck B and Spiteller P 2015 Synthesis of secondary metabolites from higher fungi Synthesis 47 2885; (b) Di Mola A, Palombi L and Massa A 2014 An overview on asymmetric synthesis of 3-substituted indolinones Targets Heterocycl. Syst. 18 113Google Scholar
  6. 6.
    Armoiry X, Aulagner G and Facon T 2008 Lenalidomide in the treatment of multiple myeloma: a review J. Clin. Pharm. Ther. 33 219CrossRefPubMedGoogle Scholar
  7. 7.
    Kondo T, Yoshida K, Yoshimura Y and Tanayama S 1995 Enantioselective pharmacokinetics in animals of pazinaclone, a new isoindoline anxiolytic, and its active metabolite Biopharm. Drug Dispos. 16 755CrossRefGoogle Scholar
  8. 8.
    For recent literature on synthesis of N(2), C(3)substituted isoindolinones, see (a) Bedford R B, Bowen J G and Méndez-Gálvez C 2017 Isoindolinones via copper-catalyzedintramolecular benzylic C–H sulfamidation J. Org. Chem. 82 1719; (b) Miura H, Terajima S, Tsutsui K and Shishido T 2017 Ruthenium-catalyzed addition of aromatic amides to internalalkynes and subsequent intramolecular cyclization for the atom-economical synthesis of isoindolinones J. Org. Chem. 82 1231; (c) Sun L, Liu P, Wang J, Lu P and Wang Y 2017 Preparation of spiro [indene-1, 1’-isoindolin]-3’-ones via sulfuricAcid-promoted cascade cyclization J. Org. Chem. 82 8407; (d) Alonso C, Gonzalez M, Palacios F and Rubiales G 2017 Study of the hetero-[4+ 2]-cycloaddition reaction of aldimines and alkynes. Synthesis of 1, 5-naphthyridines and isoindolonederivatives J. Org. Chem. 82 6379; (e) Folgueiras-Amador A A, Philipps K, Guilbaud S, Poelakker J and Wirth T 2017 An easy-to-machine electrochemical flow microreactor:efficient synthesis of isoindolinone and flow functionalization Angew. Chem. Int. Ed. 56 15446; (f) Wu X, Wang B, Zhou Y and Liu H 2017 Propargyl alcohols as one-carbon synthons:redox-neutral rhodium (III)-catalyzed C–H Bond activation for thesynthesis of isoindolinones bearing a quaternary carbon Org. Lett. 19 1294; (g) Yu L, Huang H, Chen X, Hu L, Yu Y and Tan Z 2017 Efficient syntheses of 3-hydroxyimino-1-isoindolinones and 3-methylene-1-isoindolinones via Cu-promoted C–Hactivation–nitroalkylation–intramolecular cyclization tandem processes Chem. Commun. 53 4597; (h) Xu Y, Wang F, Yu S and Li X 2017 Rhodium (III)-catalyzed selectiveaccess to isoindolinones via formal [4+ 1] annulation of arylamidesand propargyl alcohols Chin. J. Catal. 38 1390Google Scholar
  9. 9.
    Di Mola A, Palombi L and Massa A 2016 An overview on asymmetric synthesis of 3-substituted isoindolinones ChemInform 47 113Google Scholar
  10. 10.
    (a) Rao H S P and Rao A V B 2014 Copper-Catalyzed C (\(\text{sp}^{3})\)–C (\(\text{ sp }^{2})\) Cross-coupling: synthesis of 4-aryl-2-alkylamino-3-nitro-4H-chromenes Eur. J. Org. Chem. 17 3646; (b) Rao H S P and Rao A V B 2016 Copper-mediated arylation with arylboronic acids: Facile and modular synthesis of triarylmethanes Beilstein J. Org. Chem. 12 496; (c) Rao H S P, Rao A V B, Sivakumar S 2015 Copper (II) bromide–catalyzed C-C/C-N bond-forming reactions: synthesis of pyrrole-incorporated triarylmethanes Synth. Commun. 45 2712Google Scholar
  11. 11.
    Rao H S P and Rao A V B 2015 Copper-catalyzed C (\(\text{ sp }^{3})\)–OH cleavage with concomitant C–C coupling: synthesis of 3-substituted isoindolinones J. Org. Chem. 80 1506CrossRefPubMedGoogle Scholar
  12. 12.
    (a) Review: Maaliki C, Thiery E and Thibonnet J 2017 Emergence of copper-mediated formation of C–C bonds Eur. J. Org. Chem. 209; (b) Review: Allen S E, Walvoord R R, Padilla-Salinas R and Kozlowski M C 2013 Aerobic copper-catalyzed organic reactions Chem. Rev. 113 6234; (c) Sahoo H, Mukherjee S, Grandhi G S, Selvakumar J and Baidya M 2017 Copper catalyzed C–N cross-coupling reaction of aryl boronic acids at room temperature through chelation assistance J. Org. Chem. 82 2764; (d) Mandal P S and Kumar A V 2016 Copper-catalyzed imino C–N bond formation with aryl boronic acids under aerobic conditions Synlett. 27 1408; (e) Petrassi H M, Sharpless K B and Kelly J W 2001 The copper-mediated cross-coupling of phenylboronic acids and N-hydroxyphthalimide at room temperature: synthesis of aryloxyamines Org. Lett. 3 139Google Scholar
  13. 13.
    (a) Capobianco A, Di Mola A, Intintoli V, Massa A, Capaccio V, Roiser L, Waser M and Palombi L 2016 Asymmetric tandem hemiaminal-heterocyclization-aza-mannich reaction of 2-formylbenzonitriles and amines using chiral phase transfer catalysis: an experimental and theoretical study RSC Adv. 6 31861; (b) Palombi L, Di Mola A and Massa A 2015 Quick and easy access to N-mannich bases of 1-isoindolinones by catalytic electro activation of primary and secondary amines and tandem reaction with 2-formylbenzonitriles New J. Chem. 39 81Google Scholar
  14. 14.
    (a) Review: Zhang C, Tang C and Jiao N 2012 Recent advances in copper-catalyzed dehydrogenative functionalization via a single electron transfer (SET) process Chem. Soc. Rev. 41 3464; (b) Huang X, Wang J, Ni Z, Wang S and Pan Y 2014 Copper-mediated S–N formation via an oxygen-activated radical process: a new synthesis method for sulfonamides Chem. Commun. 50 4582; (c) Kumar, G S, Maheswari C U, Kumar R A, Kantam M L and Reddy K R 2011 Copper-catalyzed oxidative C-O coupling by direct C-H bond activation of formamides: Synthesis of enol carbamates and 2-carbonyl-substituted phenol carbamates Angew. Chem., Int. Ed. 50 11748Google Scholar
  15. 15.
    Armarego W L F and Chai C L L 2003 Purification of Laboratory Chemicals \(5^{{\rm th}}\) Ed. (Oxford, UK: Elsevier)Google Scholar
  16. 16.
    See Supplementary InformationGoogle Scholar
  17. 17.
    Gerber M J, Gorczynski R J and Roden R L 2007 Antihypertensive Therapy PCT Int. Appl. WO 2007098387 A2Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • H Surya Prakash Rao
    • 1
  • J Prabhakaran
    • 1
  • Silambarasan Kanniyappan
    • 1
  • A Veera Bhadra Rao
    • 1
  1. 1.Department of ChemistryPondicherry UniversityPuducherryIndia

Personalised recommendations