CuO-Nanoparticles Catalyzed Synthesis of 1,4-Disubstituted-1,2,3-Triazoles from Bromoalkenes

  • John Paul Raj
  • Dasari Gangaprasad
  • Murugesan Vajjiravel
  • Kesavan Karthikeyan
  • Jebamalai Elangovan
Rapid Communication
  • 32 Downloads

Abstract

A novel and efficient protocol involving commercially available CuO nanoparticles (CNP) as catalyst has been developed for the synthesis of 1,2,3-triazoles. A library of 1,4-disubstituted 1,2,3-triazoles has been constructed with good to excellent yields.

Graphical Abstract

SynopsisA novel and efficient protocol involving commercially available CuO nanoparticles (CNP) as catalyst has been developed for the synthesis of 1,2,3-triazoles. A library of 1,4-disubstituted 1,2,3-triazoles has been constructed with good to excellent yields.

Keywords

3-Triazoles [3+2] Cycloaddition bromoalkenes CuO nanoparticles 

Notes

Acknowledgements

We thank the SERB (New Delhi) for financial support (SB/EMEQ-260/2014). D. G. thanks CSIR (New Delhi) for Senior Research Fellowship (09/1166(0001)/2017-EMR-I).

Supplementary material

12039_2018_1452_MOESM1_ESM.pdf (5.3 mb)
Supplementary material 1 (pdf 5464 KB)

References

  1. 1.
    Huisgen R 1963 1,3-Dipolar cycloadditions past and future Angew. Chem. Int. Ed. Engl. 2 565CrossRefGoogle Scholar
  2. 2.
    Huisgen R 1963 Kinetics and mechanism of 1,3-dipolar cycloadditions Angew. Chem. Int. Ed. Engl. 2 633CrossRefGoogle Scholar
  3. 3.
    Tornøe C W, Christensen C and Meldal M 2002 Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides J. Org. Chem. 67 3057CrossRefGoogle Scholar
  4. 4.
    Rostovtsev V V, Green L G, Fokin V V and Sharpless K B 2002 A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective ligation of azides and terminal alkynes Angew. Chem. Int. Edit. 41 2596CrossRefGoogle Scholar
  5. 5.
    Agalave S G, Maujan S R and Pore V S 2011 Click chemistry: 1,2,3-triazoles as pharmacophores Chem. Asian J. 6 2696CrossRefGoogle Scholar
  6. 6.
    Kolb H C and Sharpless K B 2003 The growing impact of click chemistry on drug discovery Drug Discov. Today 8 1128CrossRefGoogle Scholar
  7. 7.
    Lutz J-F and Zarafshani Z 2008 Efficient construction of therapeutics, bio conjugates, biomaterials and bioactive surfaces using azide-alkyne “click” chemistry Adv. Drug Deliv. Rev. 60 958CrossRefGoogle Scholar
  8. 8.
    Kempe K, Krieg A, Becer C R and Schubert U S 2012 Clicking on/with polymers: a rapidly expanding field for the straight forward preparation of novel macromolecular architectures Chem. Soc. Rev. 41 176CrossRefGoogle Scholar
  9. 9.
    Huo J, Hu H, Zhang M, Hu X, Chen M, Chen D, Liu J, Xiao G, Wang Y and Wen Z 2017 A mini review of the synthesis of poly-1,2,3-triazole-based functional materials RSC Adv. 7 2281CrossRefGoogle Scholar
  10. 10.
    Beghdadi S, Miladi I A, Addis D, Romdhane H B, Bernardand J and Drockenmuller E 2012 Synthesis and polymerization of C-vinyl- and N-vinyl-1,2,3-triazoles Polym. Chem. 3 1680CrossRefGoogle Scholar
  11. 11.
    Fahrenbach A C and Stoddart J F 2011 Reactions under the click chemistry philosophy employed in supramolecular and mechanostereochemical systems Chem. Asian J. 6 2660CrossRefGoogle Scholar
  12. 12.
    Schulze B and Schubert U S 2014 Beyond click chemistry supramolecular interactions of 1,2,3-triazoles Chem. Soc. Rev. 43 2522CrossRefGoogle Scholar
  13. 13.
    Chattopadhyay B and Gevorgyan V 2012 Transition-metal-catalyzed denitrogenative transannulation: converting triazoles into other heterocyclic systems Angew. Chem. Int. Edit. 51 862CrossRefGoogle Scholar
  14. 14.
    Seo B, Jeon W H, Kim J, Kim S and Lee P H 2015 Synthesis of fluorenes via tandem copper-catalyzed [3+2] cycloaddition and rhodium-catalyzed denitrogenative cyclization in a 5-exo mode from 2-ethynylbiaryls and \(N\)-sulfonyl azides in one pot J. Org. Chem. 80 722CrossRefGoogle Scholar
  15. 15.
    Kim C-E, Park Y, Park S and Lee P H 2015 Diastereoselective synthesis of tetrahydrofurano- and tetrahydropyrano-dihydropyrroles containing N,O-acetal moieties via rhodium-catalyzed transannulation of N-sulfonyl-1,2,3-triazoles with oxacycloalkenes Adv. Synth. Catal. 357 210CrossRefGoogle Scholar
  16. 16.
    Fan W-Q and Katritzky A R 1996 In Comprehensive heterocyclic chemistry Vol. II A R Katritzky, C W Rees and E F V Scriven (Ed.) (Oxford: Elsevier) p. 1–126Google Scholar
  17. 17.
    Finley K T (Ed.) 1980 In Chemistry of heterocyclic compounds: Triazoles 1,2,3 (New York: Wiley)Google Scholar
  18. 18.
    Zhang L, Chen X, Xue P, Sun H H Y, Williams I D, Sharpless K B, Fokin V V and Jia G 2005 Ruthenium-catalyzed cycloaddition of alkynes and organic azides J. Am. Chem. Soc. 127 15998CrossRefGoogle Scholar
  19. 19.
    Rasmussen L K, Boren B C and Fokin V V 2007 Ruthenium-catalyzed cycloaddition of aryl azides and alkynes Org. Lett. 9 5337CrossRefGoogle Scholar
  20. 20.
    Boren B C, Narayan S, Rasmussen L K, Zhang L, Zhao H, Lin Z, Jia G and Fokin V V 2008 Ruthenium-catalyzed azide-alkyne cycloaddition: scope and mechanism J. Am. Chem. Soc. 130 8923CrossRefGoogle Scholar
  21. 21.
    Chen Y, Nie G, Zhang Q, Ma S, Li H and Hu Q 2015 Copper-catalyzed [3+2] cycloaddition/oxidation reactions between nitro-olefins and organic azides: highly regioselective synthesis of NO\(_{2}\)-substituted 1,2,3-triazoles Org. Lett. 17 1118CrossRefGoogle Scholar
  22. 22.
    Xie Y-Y, Wang Y-C, Qu H-E, Tan X-C, Wang H-S and Pan Y-M 2014 Regioselective synthesis of \(\beta \)-aryl enaminones and 1,4,5-trisubstituted 1,2,3-triazoles from chalcones and benzyl Azides Adv. Synth. Catal. 356 3347CrossRefGoogle Scholar
  23. 23.
    Rohilla S, Patel S S and Jain N 2016 Copper acetate catalyzed regioselective synthesis of substituted 1,2,3-triazoles: A versatile azide-alkene cycloaddition/oxidation approach Eur. J. Org. Chem. 2016 847Google Scholar
  24. 24.
    Janreddy D, Kavala V, Kuo C-W, Chen W-C, Ramesh C, Kotipalli T, Kuo T-S, Chen M-L, He C-H and Yao C-F 2013 Copper(I)-catalyzed aerobic oxidative azide-alkene cycloaddition: an efficient synthesis of substituted 1,2,3-triazoles Adv. Synth. Catal. 355 2918CrossRefGoogle Scholar
  25. 25.
    Zhang Y, Li X, Li J, Chen J, Meng X, Zhao M and Chen B 2012 CuO-promoted construction of \(N\)-2-aryl-substituted-1,2,3-triazoles via azide-chalcone oxidative cycloaddition and post-triazole arylation Org. Lett. 14 26CrossRefGoogle Scholar
  26. 26.
    Kamal A and Swapna P 2013 An improved iron-mediated synthesis of \(N\)-2-arylsubstituted 1,2,3-triazoles RSC Adv. 3 7419CrossRefGoogle Scholar
  27. 27.
    Peng W and Zhu S 2003 Efficient synthesis of 5-fluoroalkylated 1\(H\)-1,2,3-triazoles and application of the bromo difluoromethylated triazole to the synthesis of novel bicyclic gem-difluorinated 1\(H\)-pyrano[3,4-d][1,2,3]-triazol-4-one compounds Tetrahedron 59 4395CrossRefGoogle Scholar
  28. 28.
    Roque D R, Neill J L, Antoon J W and Stevens E P 2005 Synthesis of 1,2,3-triazoles by cycloadditions of azides with enol ethers Synthesis 2497Google Scholar
  29. 29.
    Hansen S G and Jensen H H 2009 Microwave irradiation as an effective means of synthesizing unsubstituted \(N\)-linked 1,2,3-triazoles from vinyl acetate and azides Synlett. 3275Google Scholar
  30. 30.
    Amantini D, Fringuelli F, Piermatti O, Pizzo F, Zunino E and Vaccaro L 2005 Synthesis of 4-aryl-1\(H\)-1,2,3-triazoles through TBAF-catalyzed [3+2] cycloaddition of 2-aryl-1-nitroethenes with \(\text{ TMSN }_{3}\) under solvent-free conditions J. Org. Chem. 70 6526CrossRefGoogle Scholar
  31. 31.
    Sengupta S, Duan H, Lu W, Petersen J L and Shi X 2008 One step cascade synthesis of 4,5-disubstituted-1,2,3-(NH)-triazoles Org. Lett. 10 1493CrossRefGoogle Scholar
  32. 32.
    Wang Y-C, Xie Y-Y, Qu H-E, Wang H-S, Pan Y-M and Huang F-P 2014 Ce(OTf)\(_{3}\)-catalyzed [3+2] cycloaddition of azides with nitroolefins: Regioselective synthesis of 1,5-disubstituted 1,2,3-triazoles J. Org. Chem. 79 4463CrossRefGoogle Scholar
  33. 33.
    Hu Q, Liu Y, Deng X, Li Y and Chen Y 2016 Aluminium(III) chloride-catalyzed three-component condensation of aromatic aldehydes, nitroalkanes and sodium azide for the synthesis of 4-aryl-NH-1,2,3-triazoles Adv. Synth. Catal. 358 1689CrossRefGoogle Scholar
  34. 34.
    Zhang H, Dong D-Z and Wang Z-L 2016 Direct synthesis of \(N\)-unsubstituted 4-aryl-1,2,3-triazoles mediated by Amberlyst-15 Synthesis 48 131Google Scholar
  35. 35.
    Kayet A and Pathak T 2013 1,5-Disubstituted 1,2,3-triazolylation at \(\text{ C }_{1}\), \(\text{ C }_{2}\), \(\text{ C }_{3}\), \(\text{ C }_{4}\), and \(\text{ C }_{6}\) of pyranosides: a metal-free route to triazolylated monosaccharides and Triazole-linked disaccharides J. Org. Chem. 78 9865CrossRefGoogle Scholar
  36. 36.
    Sahu D, Dey S, Pathak T and Ganguly B 2014 Regioselectivity of vinyl sulfone based 1,3-dipolar cycloaddition reactions with sugar azides by computational and experimental studies Org. Lett. 16 2100CrossRefGoogle Scholar
  37. 37.
    John J, Thomas J and Dehaen W 2015 Organo catalytic routes toward substituted 1,2,3-triazoles Chem. Commun. 51 10797CrossRefGoogle Scholar
  38. 38.
    Gangaprasad D, Paul Raj J, Kiranmye T, Sagubar Sadik S and Elangovan J 2015 A new paradigm of copper oxide nanoparticles catalyzed reactions: synthesis of 1,2,3-triazoles through oxidative azide-olefin cycloaddition RSC Adv. 5 63473.Google Scholar
  39. 39.
    Gangaprasad D, Paul Raj J, Kiranmye T, Sasikala R, Karthikeyan K, Kutti Rani S and Elangovan J 2016 A tunable route to oxidative and eliminative [3+2] cycloadditions of organic azides with nitroolefins: CuO nanoparticles catalyzed synthesis of 1,2,3-triazoles under solvent-free condition Tetrahedron. Lett 57 3105CrossRefGoogle Scholar
  40. 40.
    Rout L, Sen T. K and Punniyamurthy T 2007 Efficient CuO-nanoparticle-catalyzed C-S cross-coupling of thiols with iodobenzene Angew. Chem. Int. Edit. 46 5583CrossRefGoogle Scholar
  41. 41.
    Jammi S, Sakthivel S, Rout L, Mukherjee T, Mandal S, Mitra R, Saha P and Punniyamurthy T 2009 CuO nanoparticles catalyzed C-N, C-O, and C-S cross-coupling reactions: scope and mechanism J. Org. Chem. 74 1971CrossRefGoogle Scholar
  42. 42.
    Barluenga J, Valdés C, Beltran G, Escribano M and Aznar F 2006 Developments in Pd catalysis: synthesis of 1\(H\)-1,2,3-triazoles from sodium azide and alkenyl bromides Angew. Chem. Int. Edit. 45 6893CrossRefGoogle Scholar
  43. 43.
    Wu L, Chen Y, Luo J, Sun Q and Peng Mand Lin Q 2014 Base-mediated reaction of vinyl bromides with aryl azides: one-pot synthesis of 1,5-disubstituted 1,2,3-triazoles Tetrahedron. Lett. 55 3847CrossRefGoogle Scholar
  44. 44.
    Wang X, Kuang C and Yang Q 2012 Copper-catalyzed synthesis of 4-aryl-1\(H\)-1,2,3-triazoles from 1,1-dibromoalkenes and sodium azide Eur. J. Org. Chem. 2012 424Google Scholar
  45. 45.
    Zhang Z, Dong C, Yang C, Hu D, Long J, Wang L, Li H, Chen Y and Kong D 2010 Stabilized copper(I) oxide nanoparticles catalyze azide-alkyne click reactions in water Adv. Synth. Catal. 352 1600CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • John Paul Raj
    • 2
  • Dasari Gangaprasad
    • 2
  • Murugesan Vajjiravel
    • 2
  • Kesavan Karthikeyan
    • 2
  • Jebamalai Elangovan
    • 1
  1. 1.Department of ChemistryRajah Serfoji Government CollegeThanjavurIndia
  2. 2.Department of ChemistryB. S. Abdur Rahman Crescent Institute of Science & TechnologyChennaiIndia

Personalised recommendations