Emissive lead(II) benzenedicarboxylate metal-organic frameworks

Regular Article


Two known Pb(II) metal-organic frameworks (MOFs), pseudo-supramolecular isomeric pairs synthesized namely, [Pb\(_{3}\)(BDC)\(_{3}\)(DMF)\(_{3.5}\)] (1) and [Pb(BDC)(H\(_{2}\)O)] (2) (where BDC \(=\) benzenedicarboxylate) were synthesized and reexamined their structures to determine the topology of the networks. In that 1 displayed a 3D (10,3)-b linked network with having the ths topology whereas 2 shows a (6,3) 2D layers interconnected to a 3D framework structure. Remarkably, the desolvation of both 1 and 2 cause structural transformation to a known 3D network structure of [Pb(BDC)]\(_n\) (3) as established by X-ray powder diffraction patterns. Photoluminescence studies in the solid-state at room temperature of 13 compounds exhibit interesting luminescence close to white light region due to ligand-to-metal charge-transfer (LMCT).

Graphical Abstract

Synopsis: Two pseudo-supramolecular isomeric pairs of Pb(II) metal-organic frameworks (MOFs) have been synthesized which show structural transformation to desolvated 3D network structure. All the compounds exhibit interesting solid-state photoluminescence at room temperature which is very close to white light emission.


Metal-organic frameworks (MOFs) lead (II) structural transformation photoluminescence white light emission 



A. M. P. P. would like to acknowledge the support provided by KACST for funding this work through NSTIP. Project No. 14-ENE2278-04. The author is grateful to Prof. J. J. Vittal (National University of Singapore) for helpful discussion on the article.

Supplementary material

12039_2018_1441_MOESM1_ESM.pdf (1 mb)
Supplementary material 1 (pdf 1061 KB)


  1. 1.
    (a) Waltereit P, Brandt O, Trampert A, Grahn H T, Menniger J, Ramsteiner M, Reiche M and Ploog K H 2000 Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes Nature 406 865; (b) Jang E, Jun S, Jang H, Lim J, Kim B and Kim Y 2010 White-light-emitting diodes with quantum dot color converters for display backlights Adv. Mater. 22 3076; (c) Li G, Fleetham T and Li J 2014 Efficient and stable white organic light-emitting diodes employing a single emitter Adv. Mater. 26 2931Google Scholar
  2. 2.
    Gong X, Wang S, Moses D, Bazan G C and Heeger A J 2005 Multilayer Polymer Light-Emitting Diodes: White-Light Emission with High Efficiency Adv. Mater. 17 2053CrossRefGoogle Scholar
  3. 3.
    Fan C and Yang C 2014 Yellow/orange emissive heavy-metal complexes as phosphors in monochromatic and white organic light-emitting devices Chem. Soc. Rev. 43 6439CrossRefGoogle Scholar
  4. 4.
    Yan B P, Cheung C C C, Kui S C F, Xiang H F, Roy V A L, Xu S J and Che C M 2007 Efficient White Organic Light-Emitting Devices Based on Phosphorescent Platinum(II)/Fluorescent Dual-Emitting Layers Adv. Mater. 19 3599CrossRefGoogle Scholar
  5. 5.
    Wu H B, Zhou G J, Zou J H, Ho C L, Wong W Y, Yang W, Peng J B and Cao Y 2009 Efficient Polymer White-Light-Emitting Devices for Solid-State Lighting Adv. Mater. 21 4181CrossRefGoogle Scholar
  6. 6.
    (a) Yang Q Y and Lehn J M 2014 Bright White-Light Emission from a Single Organic Compound in the Solid State Angew. Chem. Int. Edit. 53 4572; (b) Jin X H, Chen C, Ren C X, Cai L X and Zhang J 2014 Bright white-light emission from a novel donor–acceptor organic molecule in the solid state  via intermolecular charge transfer Chem. Commun. 50 15878Google Scholar
  7. 7.
    Zhang R, Lin H, Yu Y L, Chen D Q, Xu J and Wang Y S 2014 A new-generation color converter for high-power white LED: transparent \(\text{ Ce }^{3+}\):YAG phosphor-in-glass Laser Photonics Rev. 8 158CrossRefGoogle Scholar
  8. 8.
    (a) Dohner E R, Hoke E T and Karunadasa H I 2014 Self-Assembly of Broadband White-Light Emitters J. Am. Chem. Soc. 136 1718; (b) Dohner E R, Jaffe A, Bradshaw L R and Karunadasa H I 2014 Intrinsic White-Light Emission from Layered Hybrid Perovskites J. Am. Chem. Soc. 136 13154Google Scholar
  9. 9.
    Kim J H, Ko Y H, Cho J H, Gong S H, Ko S M and Cho Y H 2014 Toward highly radiative white light emitting nanostructures: a new approach to dislocation-eliminated GaN/InGaN core–shell nanostructures with a negligible polarization field Nanoscale 26 14213CrossRefGoogle Scholar
  10. 10.
    (a) Heine J and Muller-Buschbaum K 2013 Engineering metal-based luminescence in coordination polymers and metal–organic frameworks Chem. Soc. Rev. 42 9232; (b) Allendorf M D, Bauer C A, Bhakta R K and Houk R J T 2009 Luminescent metal–organic frameworks Chem. Soc. Rev. 38 1330; (c) Haider G, Usman M, Chen T-P, Perumal P, Lu K-L, Chen Y-F 2016 Electrically Driven White Light Emission from Intrinsic Metal–Organic Framework ACS Nano 10 8366; (d) Wu Z-F, Tan B, Deng Z-H, Xie Z-L, Fu J-J, Shen N-N, Huang X-Y 2016 Dual-Emission Luminescence of Magnesium Coordination Polymers Based on Mixed Organic Ligands Chem. Eur. J. 22 1334Google Scholar
  11. 11.
    (a) Chen J, Zhang Q, Zheng F K, Liu Z F, Wang S H, Wu A Q and Guo G C 2015 Intense photo- and tribo-luminescence of three tetrahedral manganese(II) dihalides with chelating bidentate phosphine oxide ligand Dalton Trans. 44 3289; (b) Han Y H, Tian C B, Li Q H, Du S W 2014 Highly chemical and thermally stable luminescent \(\text{ Eu }_{x} \text{ Tb }_{1-x}\) MOF materials for broad-range pH and temperature sensors J. Mater. Chem. C 2 8065Google Scholar
  12. 12.
    Wei Z, Gu Z Y, Arvapally R K, Chen Y P, McDougald R N, Ivy J F, Yakovenko A A, Feng D M, Omary A and Zhou H C 2014 Rigidifying Fluorescent Linkers by Metal–Organic Framework Formation for Fluorescence Blue Shift and Quantum Yield Enhancement J. Am. Chem. Soc. 136 8269CrossRefGoogle Scholar
  13. 13.
    (a) Gao X, Chang S, Liu H and Liu Z 2016 A Promising White-Light-Emitting Material Constructed from Encapsulating Eu3+/Tb3+ Hybrid Ions into a Robust Microporous Metal–Organic Framework Eur. J. Inorg. Chem. 2837; (b) Li Y-F, Wang D, Liao Z, Kang Y, Ding W-H, Zheng X-J, Jin L-P 2016 Luminescence tuning of the Dy–Zn metal–organic framework and its application in the detection of Fe(III) ions Mater. J. Chem. C 4 4211; (c) Wang X, Yan P, Li Y, An G, Yao X and Li G 2017 Highly Efficient White-Light Emission and UV–Visible/NIR Luminescence Sensing of Lanthanide Metal–Organic Frameworks Cryst. Growth Des. 17 2178; (d) Xu B, Cheng Y, Hu H-M, Bai C, Wang X, Yang M-L, Xue G 2016 Syntheses, crystal structures and luminescence properties of lanthanide-based coordination polymers constructed from a functionalized terpyridyl carboxylate ligand CrystEngComm 18 4613; (e) Yang Y, Chen L, Jiang F, Yu M, Wan X, Zhang B and Hong M 2017 A family of doped lanthanide metal–organic frameworks for wide-range temperature sensing and tunable white light emission J. Mater. Chem. C 5 1981; (f) Zhao Y W, Zhang F-Q, Zhang X-M 2016 Single Component Lanthanide Hybrids Based on Metal–Organic Framework for Near-Ultraviolet White Light LED ACS Appl. Mater Interfaces 8 24123Google Scholar
  14. 14.
    (a) Wang S H, Zheng F K, Zhang M J, Liu Z F, Chen J, Xiao, Y, Wu A Q, Guo G C and Huang J S 2013 Homochiral zinc(II) coordination compounds based on in-situ-generated chiral amino acid-tetrazole ligands: circular dichroism, excitation light-induced tunable photoluminescence, and energetic performance Inorg. Chem. 52 10096; (b) Wu M F, Liu Z F, Wang S H, Chen J, Xu G, Zheng F K, Guo G C and Huang J S 2011 Structures and photoluminescence of zinc(II) coordination polymers based on  in situ generated \(1H\)-tetrazolate-5-propionic acid ligands CrystEngComm 13 6386; (c) Wu M F, Zheng F K, Wu A Q, Li Y, Wang M S, Zhou W W, Chen F, Guo G C and Huang J S 2010 Hydrothermal syntheses, crystal structures and luminescent properties of zinc(II) coordination polymers constructed by bifunctional tetrazolate-5-carboxylate ligands CrystEngComm 12 260; (d) Xie W, Qin J-S, He W-W, Shao K-Z, Su Z-M, Du D-Y, Li S-L and Lan Y-Q 2017 Encapsulation of an iridium complex in a metal–organic framework to give a composite with efficient white light emission Inorg. Chem. Front. 4 547; (e) Hua C A, Su-Ci M, Kai Z, Cong W C, Wei Z, Jian W A and Jun Q 2017 A New Copper(I) Complex Based on 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole: Synthesis, Crystal Structure, Theoretical Study, Thermal Behavior and Luminescence J. Chem. Sci. 129 185; (f) Ali F, Nayak P K, Periasamy N and Agarwal N 2017 Synthesis, photophysical, electrochemical and electroluminescence studies of red emitting phosphorescent Ir(III) heteroleptic complexes J. Chem. Sci. 129 1391Google Scholar
  15. 15.
    (a) Vogler A and Nikol H 1992 Photochemistry and photophysics of coordination compounds of the main group metals Pure Appl. Chem. 64 1311; (b) Strasser A and Vogler A 2004 Intraligand phosphorescence of lead(II) \(\beta \)-diketonates under ambient conditions J. Photochem. Photobiol. \(A\) 165 115; (c) Roy S, Choubey S, Khan K, Mitra P and Ghosh B K Syntheses, molecular and crystalline architectures, and luminescence behaviour of terephthalate bridged heptacoordinated dinuclear lead(II) complexes containing a pentadentate N-donor Schiff base J. Chem. Sci. 125 715Google Scholar
  16. 16.
    (a) Yang J, Ma J F, Liu Y Y, Ma J C and Batten S R 2007 Organic-Acid Effect on the Structures of a Series of Lead(II) Complexes Inorg. Chem. 46 6542; (b) Fan S R and Zhu L G 2007 Influence of the Reaction Conditions on the Self-assembly of Lead(II) 5-Sulfosalicylate Coordination Polymers with Chelating Amine Ligands Inorg. Chem. 46 6785; (c) Zhao Y H, Xu H B, Fu Y M, Shao K Z, Yang S Y, Su Z M, Hao X R, Zhu D X and Wang E B 2008 A Series of Lead(II)-Organic Frameworks Based on Pyridyl Carboxylate Acid N-Oxide Derivatives: Syntheses, Structures, and Luminescent Properties Cryst. Growth Des. 8 3566; (d) Yang J, Ma J F, Liu Y Y, Ma J C and Batten S R 2009 A Series of Lead(II) Complexes with \(\pi -\pi \) Stackings: Structural Diversities by Varying the Ligands Cryst. Growth Des. 9 1894; (e) Yang J, Li G D, Cao J J, Yue Q, Li G H and Chen J S 2007 Structural Variation from 1D to 3D: Effects of Ligands and Solvents on the Construction of Lead(II)–Organic Coordination Polymers Chem. Eur. J. 13 3248; (f) Wardana F Y, Ng S-W and Wibowo A C 2015 The Lead Coordination Polymers Containing Pyrazine-2,3-Dicarboxylic Acid: Rapid Structural Transformations and Cation Exchange Cryst. Growth Des. 15 5930Google Scholar
  17. 17.
    (a) Deo S H and Godwin A J A 2000 Selective, Ratiometric Fluorescent Sensor for \(\text{ Pb }^{2+} \) J. Am. Chem. Soc. 122 174; (b) Li L, Zhang S, Han L, Sun Z, Luo J and Hong M 2013 A Non-Centrosymmetric Dual-Emissive Metal–Organic Framework with Distinct Nonlinear Optical and Tunable Photoluminescence Properties Cryst. Growth Des. 13 106; (c) Sahu J, Ahmed M and Bharadwaj P K 2013 Structural Diversity and Luminescence Properties of Coordination Polymers Built With a Rigid Linear Dicarboxylate and Zn(II)/Pb(II) Ion Cryst. Growth Des. 13 2618; (d) Huang K-L, Liu X, Li J-K, Ding Y-W, Chen X, Zhang M-X, Xu X-B and Song X-J 2010 Three-Dimensional Metal(II)-Organic Coordination Polymers from Binuclear, Trinuclear, and Polynuclear Clusters Bridged by \(p\)-Benzenediacrylates: Syntheses, Topologies, Photosensitive Properties, and Hydrogen Uptake Cryst. Growth Des. 10 1508Google Scholar
  18. 18.
    (a) Zhao Y-H, Xu H-B, Fu Y-M, Shao K-Z, Yang S-Y, Su Z-M, Hao X-R, Zhu D-X and Wang E-B 2008 A Series of Lead(II)-Organic Frameworks Based on Pyridyl Carboxylate Acid N-Oxide Derivatives: Syntheses, Structures, and Luminescent Properties Cryst. Growth Des. 8 3566; (b) Zhao Y-H, Xu H-B, Shao K-Z, Xing Y, Su Z-M and Ma J-F 2007 Syntheses, Characterization, and Luminescent Properties of Three 3D Lead-Organic Frameworks with 1D Channels Cryst. Growth Des. 7 513; (c) Li L, Zhang S, Han L, Sun Z, Luo J and Hong M A 2013 Non-Centrosymmetric Dual-Emissive Metal–Organic Framework with Distinct Nonlinear Optical and Tunable Photoluminescence Properties Cryst. Growth Des. 13 106Google Scholar
  19. 19.
    (a) Katz M J, Kaluarachi H, Batchelor R J, Bokov A A, Ye Z-G and Leznoff D B 2007 Highly birefringent materials designed using coordination polymer synthetic methodology Angew. Chem. Int. Edit. 46 8804; (b) Katz M J, Aguiar P M, Batchelor R J, Bokov A A, Ye Z-G, Kroeker S and Leznoff D B 2006 Structure and Multinuclear Solid-State NMR of a Highly Birefringent Lead-Gold Cyanide Coordination Polymer J. Am. Chem. Soc. 128 3669Google Scholar
  20. 20.
    Dale S H, Elsegood M R J and Kainth S 2004 Poly[lead(II)- \(\mu _{2}\)-aqua-\(\mu _{4}\)-terephthalato] Acta Cryst. C60 m76Google Scholar
  21. 21.
    Zhang P L, Yong H X, Chun G W, Jing L, Xiao Q Z, Mao F G and Shu Y N 2009 A New Coordination Polymer \([\text{ Pb(1,4-BDC) }]_{n}\) Containing a Unique \(\mu _{6}\)-Bridging Coordination Mode Z. Anorg. Allg. Chem. 1650Google Scholar
  22. 22.
    (a) Moulton B and Zaworotko M J 2001 From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids Chem. Rev. 101 1629; (b) Batten S R 2001 Topology of interpenetration CrystEngComm 3 67; (c) Biradha K, Sarkar M and Rajput L 2006 Crystal engineering of coordination polymers using \(4,4\prime \)-bipyridineas a bond between transition metal atoms Chem. Commun. 4169; (d) Nangia A 2010 Supramolecular chemistry and crystal engineering J. Chem. Sci. 122 295Google Scholar
  23. 23.
    Blatov V A 2006 Multipurpose crystallochemical analysis with the program package TOPOS IUCr CompComm Newsletter 7 4Google Scholar
  24. 24.
    Batten S R and Robson R 1998 Interpenetrating Nets: Ordered, Periodic Entanglement Angew. Chem. Int. Edit. 37 1461CrossRefGoogle Scholar
  25. 25.
    (a) Ke Y, Collins D J, Sun D and Zhou H-C 2006 (10,3)-a Noninterpenetrated Network Built from a Piedfort Ligand Pair Inorg. Chem. 45 1897; (b) Kepert C J, Prior T J and Rosseinsky M J A Versatile Family of Interconvertible Microporous Chiral Molecular Frameworks: The First Example of Ligand Control of Network Chirality J. Am. Chem. Soc. 2000 5158; (c) Abrahams B F, Batten S R, Hamit H, Hoskins B F and Robson R A 1996 Wellsian ‘three-dimensional’ racemate: eight interpenetrating, enantiomorphic (10,3)-a nets, four right- and four left-handed Chem. Commun. 1313; (d) Bradshaw D, Claridge J B, Cussen E J, Prior T J and Rosseinsky M J 2005 Design, Chirality, and Flexibility in Nanoporous Molecule-Based Materials Acc. Chem. Res. 38 273; (e) Ma S, Fillinger J A, Ambrogio M W, Zuo J-L and Zhou H-C 2007 Synthesis and Characterizations of a Magnesium Metal-Organic Framework with the (10,3)-a Net Topology Inorg. Chem. Commun. 10 220Google Scholar
  26. 26.
    Spek A L 2003 PLATON A multipurpose Crystallographic Tool, Ultrecht, The NetherlandsGoogle Scholar
  27. 27.
    (a) Vittal J J 2007 Supramolecular structural transformations involving coordination polymers in the solid-state Coord. Chem. Rev. 251 178; (b) Kuroda R, Higashiguchi K, Hasebe S and Imai Y 2004 Crystal to crystal transformation in the solid state CrystEngComm 6 464Google Scholar
  28. 28.
    Zheng L-Y, Li K, Zhao S, Liu L, Li B-L and Wu B 2016 Syntheses, structures and properties of eight coordination polymers based on bis(imidazole) and biscarboxylate ligands Polyhedron 104 1CrossRefGoogle Scholar
  29. 29.
    Santra A and Bharadwaj P K 2014 Solvent-Induced Structural Diversity of Partially Fluorinated, Stable Pb(II) Metal–Organic Frameworks and Their Luminescence Properties Cryst. Growth Des. 14 1476CrossRefGoogle Scholar
  30. 30.
    (a) See http://en.wikipedia.org/wiki/CIE_1931_color_space for more details (accessed on: 20 September, 2017); (b) Silver J and Withnall R 2008 In Luminescent Materials A Kitai (Ed.) (Chicester: John Wiley & Sons) p. 75

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of ChemistryKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.Centre of Excellence in Nanotechnology (CENT)King Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations