Advertisement

Colorimetric and fluorescence signalling of thioesculetin in presence of oxidising agent

  • Rupali G Shinde
  • Ayesha A Khan
  • Atanu Barik
Regular Article
  • 73 Downloads

Abstract

Thioesculetin (TE) is a sulfur analogue of esculetin. The UV-Vis absorption maximum of TE at 470 nm shifted to 357 nm in the presence of oxidising agent such as m-chloroperoxy benzoic acid (m-CPBA). With gradual increase in the m-CPBA concentration, the absorption band at 470 nm decreases while the band at 357 nm increases. The same system shows gradual increase in the fluorescence signal at 463 nm in the presence of m-CPBA. The fluorescence signal was unaffected in the presence of common anions and metal cations. The mechanism for optical signalling was due to the conversion of weakly fluorescent TE to fluorescent esculetin through desulfurization reaction. \(^{13}\hbox {C}\)-NMR shows strong evidence in support of the chemical conversion of TE to esculetin. TE may find applications to probe the redox environment in various chemical and biochemical processes.

Graphical Abstract 

SYNOPSIS Thioesculetin solution changes yellow to colorless on addition of the mCPBA and there is also significant increase in the fluorescence signal. In the presence of mCPBA, thioesculetin is converted to esculetin through desulfurization reaction.

Keywords

Thioesculetin m-chloroperoxy benzoic acid absorption fluorescence desulfurization 

Notes

Acknowledgements

RGS thanks Department of Atomic Energy, Government of India for providing fellowship under BARC-SPPU collaborative research programme. The authors are highly grateful to Dr. K. I. Priyadarsini, BARC and Prof. A. S. Kumbhar, SPPU for the keen interest in this research work. The authors are also thankful to Head, RPCD, BARC and Head, Chemistry Department, SPPU for their constant encouragement and support.

Supplementary material

12039_2018_1440_MOESM1_ESM.pdf (707 kb)
Supplementary material 1 (pdf 706 KB)

References

  1. 1.
    Atkins R L and Bliss D E 1978 Substituted coumarins and azacoumarins. Synthesis and fluorescent properties J. Org. Chem. 43 1975CrossRefGoogle Scholar
  2. 2.
    Halstead J A and Reeves R R 1978 Mixed solvent systems for optimizing output from a pulsed dye laser Opt. Commun. 27 273CrossRefGoogle Scholar
  3. 3.
    Fletcher A N 1977 Laser Dye Stability. Part 3. Bicyclic Dyes in Ethanol Appl. Phys. 14 295CrossRefGoogle Scholar
  4. 4.
    Schimitschek E J, Trias J A, Hammond P R, Henry R A and Atkins R L 1976 New laser dyes with blue-green emission Opt. Commun. 16 313CrossRefGoogle Scholar
  5. 5.
    Reynolds G A and Drexhage K H 1975 New coumarin dyes with rigidized structure for flashlamp-pumped dye lasers Opt. Commun. 13 222CrossRefGoogle Scholar
  6. 6.
    Rechthaler K and Köhler G 1994 Excited state properties and deactivation pathways of 7-aminocoumarins Chem. Phys. 189 99CrossRefGoogle Scholar
  7. 7.
    Li J, Zhang C, Yang S, Yang W and Yang G 2014 A coumarin-based fluorescent probe for selective and sensitive detection of thiophenols and its application Anal. Chem. 86 3037CrossRefGoogle Scholar
  8. 8.
    Jones II G, Jackson W R, Konaktanaporn S and Halpern A M 1980 Solvent effects on photophysical parameters for coumarin laser dyes Opt. Commun. 33 315CrossRefGoogle Scholar
  9. 9.
    Jones II G, Jackson W R and Halpern A M 1980 Medium effects on fluorescence quantum yields and lifetimes for coumarin laser dyes Chem. Phys. Lett. 72 391CrossRefGoogle Scholar
  10. 10.
    Sarkar N, Dutta A, Das S and Bhattacharyya K 1996 Solvation dynamics of coumarin 480 in micelles J. Phys. Chem. 100 15483CrossRefGoogle Scholar
  11. 11.
    Sarkar N, Das K, Dutta A, Das S and Bhattacharyya K 1996 Solvation Dynamics of Coumarin 480 in Reverse Micelles. Slow Relaxation of Water Molecules J. Phys. Chem. 100 10523CrossRefGoogle Scholar
  12. 12.
    Nad S and Pal H 2002 Photoinduced electron transfer from aliphatic amine to coumarin dyes J. Chem. Phys. 116 1658CrossRefGoogle Scholar
  13. 13.
    Castner E W, Kennedy D Jr and Cave R J 2000 Solvent as electron donor: Donor/Acceptor electronic coupling is a dynamical variable J. Phys. Chem. A 104 2869CrossRefGoogle Scholar
  14. 14.
    Pal H, Shirota H, Tominaga K and Yoshihara K 1999 Ultrafast intermolecular electron transfer from orthomethoxyaniline to excited coumarin dyes J. Chem. Phys. 110 11454CrossRefGoogle Scholar
  15. 15.
    Shirota H, Pal H, Tominaga K and Yoshihara K 1998 Substituent effect and deuterium isotope effect of ultrafast intermolecular electron transfer: Coumarin in electron-donating solvent J. Phys. Chem. A 102 3089CrossRefGoogle Scholar
  16. 16.
    Nagasawa Y, Yartsev A P, Tominaga K, Johnson A E and Yoshihara K 1993 Substituent effects on intermolecular electron transfer: coumarins in electron-donating solvents J. Am. Chem. Soc. 115 7922CrossRefGoogle Scholar
  17. 17.
    Nandi N, Bhattacharyya K and Bagchi B 2000 Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems Chem. Rev. 100 2013CrossRefGoogle Scholar
  18. 18.
    Levinger N E 2000 Ultrafast dynamics in reverse micelles, microemulsions, and vesicles Curr. Opin. Colloid Interface Sci. 5 118CrossRefGoogle Scholar
  19. 19.
    Gardecki J A and Maroncelli M 1999 Comparison of the single-wavelength and spectral-reconstruction methods for determining the solvation-response function J. Phys. Chem. A 103 1187CrossRefGoogle Scholar
  20. 20.
    Horng M L, Gardecki J A, Papazyan A and Maroncelli M 1995 Subpicosecond measurements of polar solvation dynamics: Coumarin 153 revisited J. Phys. Chem. 99 17311CrossRefGoogle Scholar
  21. 21.
    Reynolds L, Gardecki J A, Frankland S J V, Horng M L and Maroncelli M 1996 Dipole solvation in nondipolar solvents: Experimental studies of reorganization energies and solvation dynamics J. Phys. Chem. 100 10337CrossRefGoogle Scholar
  22. 22.
    Li H, Cai L and Chen Z 2012 Coumarin-Derived Fluorescent Chemosensors In Advances in Chemical Sensors Wen Wang (Ed.) Available at http://www.intechopen.com/books/advances-in-chemical-sensors/coumarin-derived-fluorescent-chemosensors. Accessed on 12 May 2016
  23. 23.
    Du J, Hu M, Fan J and Peng X 2012 Fluorescent chemodosimeters using “mild” chemical events for the detection of small anions and cations in biological and environmental media Chem. Soc. Rev. 41 4511CrossRefGoogle Scholar
  24. 24.
    Kaur K, Saini R, Kumar A, Luxami V, Kaur N, Singh P and Kumar S 2012 Chemodosimeters: An approach for detection and estimation of biologically and medically relevant metal ions, anions and thiols Coord. Chem. Rev. 256 1992CrossRefGoogle Scholar
  25. 25.
    Choi M G, Kim Y H, Namgoong J E and Chang S 2009 \(\text{Hg}^{2+}\)-selective chromogenic and fluorogenic chemodosimeter based on thiocoumarins Chem. Commun. 3560Google Scholar
  26. 26.
    Park J E, Choi M G and Chang S 2012 Colorimetric and fluorescent signalling of \(\text{ Au }^{3+}\) by desulfurization of thiocoumarin Inorg. Chem. 51 2880CrossRefGoogle Scholar
  27. 27.
    Xu C, Li H and Yin B 2015 A colorimetric and ratiometric fluorescent probe for selective detection and cellular imaging of glutathione Biosens. Bioelectron. 72 275CrossRefGoogle Scholar
  28. 28.
    Moon J O, Lee W D, Choi M G, Ahn S and Chang S 2012 Dual signalling of hypochlorous acid by desulfurization of thiocoumarin Tetrahedron Lett. 53 6594CrossRefGoogle Scholar
  29. 29.
    Cha S, Hwang J, Choi M G and Chang S 2010 Dual signalling of m-chloroperbenzoic acid by desulfurization of thiocoumarin Tetrahedron Lett. 51 6663CrossRefGoogle Scholar
  30. 30.
    Bhattacharyya K, Das P K, Ramamurthy V and Rao V P 1986 Triplet-state photophysics and transient photochemistry of cyclic enethiones: A laser flash photolysis study J. Chem. Soc. Faraday Trans. 2 82 135CrossRefGoogle Scholar
  31. 31.
    Burdzinski G, Ziolek M, Karolczak J and Maciejewski A 2004 \(\text{ S }_{2}\) and \(\text{ S }_{1}\) states deactivation of thiocoumarin in n-hexane and acetonitrile studied by femtosecond fluorescence upconversion and transient absorption spectroscopies J. Phys. Chem. A 108 11160CrossRefGoogle Scholar
  32. 32.
    Lee S K, Choi M G and Chang S K 2014 Signalling of chloramine: a fluorescent probe for trichloroisocyanuric acid based on deoximation of a coumarin oxime Tetrahedron Lett. 55 7047CrossRefGoogle Scholar
  33. 33.
    Barik A, Nath S and Pal H 2003 Effect of solvent polarity on the photophysical properties of coumarin-1 dye J. Chem. Phys. 119 10202CrossRefGoogle Scholar
  34. 34.
    Singh B G, Thomas E, Kumakura F, Dedachi K, Iwaoka M and Priyadarsini K I 2010 One-electron redox processes in a cyclic selenide and a selenoxide: A pulse radiolysis study J. Phys. Chem. A 114 8271CrossRefGoogle Scholar
  35. 35.
    Ninomiya M, Aoki T, Adfa M, Yoshimura T and Koketsu M 2014 Comparison of antitermite properties of 2-thioxocoumarins against Coptotermes formosanus Shiraki Holzforschung 68 361Google Scholar
  36. 36.
    Hussain H, Al-Harrasi A, Green I R, Ahmed I, Abbas G and Rehman N U 2014 meta-Chloroperbenzoic acid (mCPBA): a versatile reagent in organic synthesis RSC Adv. 4 12882CrossRefGoogle Scholar
  37. 37.
    Bahrami K, Khodaei M M, Shakibaian V, Khaledian D and Yousefi B H 2012 \(\text{ TiCl }_{4}\)-promoted desulfurization of thiocarbonyls and oxidation of sulfides in the presence of \(\text{ H }_{2}\text{ O }_{2}\) J. Sul. Chem. 33 155CrossRefGoogle Scholar
  38. 38.
    Budini R, Tonelli D and Girotti S 1980 Analysis of total phenols using the Prussian Blue method J. Agric. Food Chem. 28 1236CrossRefGoogle Scholar
  39. 39.
    McKillop A and Young D W 1977 Oxidation of phenols and hydroquinones by mercury(II) trifluoroacetate and mercury(II) oxide Synth. Commun. 7 467CrossRefGoogle Scholar
  40. 40.
    Evans F W and Sehon A H 1963 The thermal decomposition of peracetic acid in aromatic solvents Can. J. Chem. 41 1826CrossRefGoogle Scholar
  41. 41.
    Bach R D, Ayala P Y and Schlegel H B 1996 A reassessment of the bond dissociation energies of peroxides. An ab Initio study J. Am. Chem. Soc. 118 12758CrossRefGoogle Scholar
  42. 42.
    Ramnani S P, Dhanya S and Bhattacharyya P K 1990 Pulse radiolytic studies on the oxidation of 1, 3 dithiolane 2-thione (ETTC) by OH radicals in aqueous media Int. J. Radiat. Appl. Instrum. Part C 36 409Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of ChemistrySavitribai Phule Pune UniversityPuneIndia
  2. 2.Radiation and Photochemistry DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations