Skip to main content
Log in

A gas–liquid interface synthesis in polyoxometalate chemistry: potential bag filter for volatile organic amines

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Diffusion of piperidine and pyridine into an acidified aqueous solution of \(\hbox {Na}_{2}\hbox {MoO}_{4}\), yield compounds \([(\hbox {pipH})_{4}][\hbox {Mo}_{8}\hbox {O}_{26}]\cdot 4\hbox {H}_{2}\hbox {O}\) \((\hbox {pip} = \hbox {piperidine} = \hbox {C}_{5}\hbox {H}_{11}\hbox {N})\) (1) and \([(\hbox {pyH})_{4}][\hbox {Mo}_{8}\hbox {O}_{26}]\) \((\hbox {py} = \hbox {pyridine} = \hbox {C}_{5}\hbox {H}_{5}\hbox {N})\) (2), respectively. Compound 1 possesses supramolecular 3-D network and the relevant connectivity pattern generates channels of approximate dimensions of \(10.76 \times 11.57 \acute{{\AA }}^{2}\), in which the piperidinium cations are located as guests. Multidimensional supramolecular frameworks (3-D in compound 1 and 2-D layer type of network in compound 2) have been made possible, as the organic cations and polyoxometalate (POM) anions are glued together by significant hydrogen bonding interactions. The synthesis of compounds 1 and 2 provides a unique ‘gas–liquid’ synthetic route in POM chemistry that result in organic–inorganic hybrid materials with structural diversities. This synthetic approach, first time in POM chemistry, can be described as a potential bag filter for volatile organic amines.

Graphical Abstract

Synopsis: Diffusion of piperidine and pyridine vapours into acidified aqueous molybdate solution leads to the formation of ion pair compounds having supramolecular framework structures. These organic amines are trapped as guest or as part of the framework making the present system a potential bag filter for the volatile organic amines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. (a) Pope M T and Müller A 1991 Polyoxometalate chemistry: an old field with new dimnsions in several disciplines Angew. Chem. Int. Ed. Engl. 30 34; (b) Müller A, Peters, M T and Pope D 1989 Gatteschi, Polyoxometalates: very large clusters nanoscale magnets Chem. Rev. 98 239; (c) Pope M T 1983 Heteropoly and isopoly oxometalates (Berlin: Springer-Verlag); (d) Katsoulis D E 1998 A survey of applications of polyoxometalates Chem. Rev. 98 359

  2. (a) Klemperer W G and Wakk C G 1998 Polyoxoanion moves toward future Chem. Rev. 98 297; (b) Coronado E and Gomez-Garcia C J 1998 Polyoxometalate based molecular materials Chem. Rev. 98 273; (c) Jeanin Y P 1998 The nomenclature of polyoxometalates: how to connect a name and a structure Chem. Rev. 98 51; (d) Baker L C W and Glick D C 1998 Present general status of understanding of heteropoly electrolytes Chem. Rev. 98 3; (e) Cronin L, Kögerler P and Müller A 2000 Controlling growth of novel solid-state materials via discrete molybdenum-oxide-based building blocks as synthons J. Solid State Chem. 152 57; (f) Roy S, Sarkar S, Pan J, Waghmare U V, Dhanya R, Narayana C and Peter S C 2016 Crystal Structure and Band Gap Engineering in Polyoxometalate Based Inorganic-Organic Hybrids Inorg. Chem. 55 3364; (g) Iyer A K and Peter S C 2014 Two Dimensional Bicapped Supramolecular Hybrid Semiconductor Material Constructed from the Insulators \(\upalpha \)-Keggin Polyoxomolybdate and \(4,4^\prime \)-Bipyridine Inorg. Chem. 53 653; (h) Iyer A K, Roy S, Haridasan R, Sarkar S and Peter S C 2014 Ligand mediated valence fluctuation of copper in new hybrid materials constructed from decavanadate and Cu(1,10-phenanthroline) complex Dalton Trans. 43 2153

  3. (a) Ishii Y, Takenaka Y and Konishi K 2004 Porous organic-inorganic assemblies constructed from Keggin polyoxometalate anions and calix[4]arene-\(\text{Na}^{+}\) complexes: structures and guestsorption profiles Angew. Chem. Int. Ed. Engl. 43 2702; (b) Pavani K, Lofland S E, Ramanujachary K V and Ramanan A 2007 The hydrothermal synthesis of transition metal complex template octamolybdates Eur. J. Inorg. Chem. 568; (c) Thomas J and Ramanan A 2008 Growth of copper pyrazaole complex templated phosphomolybdate: supramolecular interactions dictate nucleation of a crystal Cryst. Growth Des. 8 3390; (d) Singh M, Lofland S E, Ramanujachary K V and Ramanan A 2010 Crystallization of Anderson-Evans type chromium molybdate solids incorporated with a metal pyrazine complex or coordination polymer Cryst. Growth Des. 10 5105; (e) Singh M and Ramanan A 2011 Crystal engineering of polyoxomolybdate based metal-organic solids: the case of chromium molybdate cluster based metal complexes and coordination polymers Cryst. Growth Des. 11 3381

  4. Miras H N, Vila-Nada L and Cronin L 2014 Polyoxometalate based open-frameworks Chem. Soc. Rev. 43 5679

    Article  CAS  Google Scholar 

  5. Du D, Qin J, Li S, Su Z and Lan Y 2014 Recent advances in porous polyoxometalate based metal-organic frameworks Chem. Soc. Rev. 43 4615

    Article  CAS  Google Scholar 

  6. (a) Yaun M, Li Y, Wang E, Tian C, Wang L, Hu N and Jia H 2003 Modified polyoxometalates: hydrothermal syntheses and crystal structures of three novel reduced and capped Keggin derivatives decorated by transition metal complexes Inorg. Chem. 42 3670; (b) Xu Y, Xu J-Q, Zhang K-L, Zhang Y and You X-Z 2000 Keggin unit supported transition metal complexes: hydrothermal synthesis and characterization of \([\text{ Ni }(2,2^\prime \text{ bipy })_{3}]_{1.5}[\text{ PW }_{12}\text{ O }_{40}\text{ Ni }(2,2^\prime -\text{ bipy })_{2}(\text{ H }_{2}\text{ O })]\cdot 0.5\text{ H }_{2}\text{ O }\) and \([\text{ Co }(1,10^\prime -\text{ phen })_{3}]_{1.5}[\text{ PMo }_{12}\text{ O }_{40}\text{ Co }(1,10^\prime -\text{ phen })_{2}(\text{ H }_{2}\text{ O })]\cdot 0.5\text{ H }_{2}\text{ O }\). Chem. Commun. 153; (c) Zapf P J, Warren C J, Haushalter R C and Zubieta J 1997 One- and two-dimensional organic–inorganic composite solids constructed from molybdenum oxide clusters and chains linked through \(\{\text{ M }(2,2^\prime -\text{ bpy })\}^{2+}\) fragments (M = Co, Ni, Cu) Chem. Commun. 1543; (d) Khan M I, Yohannes E and Doedens R J 2003 A novel series of materials composed of arrays of vanadium oxide container molecules, \(\{\text{ V }_{18}\text{ O }_{42}(\text{ X })\}\,(\text{ X } = \text{ H }_{2}\text{ O }, \text{ Cl }^{-},\,\text{ Br }^{-})\): synthesis and characterization of \([\text{ M }_{2}\text{ H }_{2}\text{ N }(\text{ CH }_{2})_{2}\text{ NH }_{2})_{5}][\{\text{ M }(\text{ H }_{2}\text{ N }(\text{ CH }_{2})_{2}\text{ NH }_{2})_{2}\}_{2}\text{ V }_{18}\text{ O }_{42}(\text{ X })]\cdot 9\text{ H }_{2}\text{ O } (\text{ M } = \text{ Zn }, \text{ Cd })\). Inorg. Chem. 42 3125; (e) Hagrman D, Zapf P J and Zubieta J 1998 A two-dimensional network constructed from hexamolybdate, octamolybdate and \([\text{ Cu }_{3}(4,7-\text{ phen })_{3}]^{3+}\) clusters: \([\{\text{ Cu }_{3}(4,7-\text{ phen })_{3}\}_{2}\{\text{ Mo }_{14}\text{ O }_{45}\}]\) Chem. Commun. 1283; (f) Lin B Z and Liu S X 2002 First hexadecavanadate compound: hydrothermal synthesis and characterization of a three-dimensional framework \([\{\text{ Cu }(1,2-\text{ pn })_{2}\}_{7}\{\text{ V }_{16}\text{ O }_{38}(\text{ H }_{2}\text{ O })\}_{2}]\cdot 4\text{ H }_{2}\text{ O }\) Chem. Commun. 2126; (g) Hagrman D, Zubeita C, Rose D J, Zubieta J and Haushalter R C 1997 Composite solids constructed from one-dimensional coordination polymer matrices and molybdenum oxide subunits: polyoxomolybdate clusters within \([\{\text{ Cu }(4,4^{\prime }-\text{ bpy })\}_{4} \text{ Mo }_{8}\text{ O }_{26}]\) and \([\{\text{ Ni }(\text{ H }_{2}\text{ O })_{2}(4,4^{\prime }-\text{ bpy })_{2}\}_{2}\text{ Mo }_{8}\text{ O }_{26}]\) and one-dimensional oxide chains in \([\{\text{ Cu }(4,4^{\prime }-\text{ bpy })\}_{4}\text{ Mo }_{15}\text{ O }_{47}]\cdot 8\text{ H }_{2}\text{ O }\) Angew. Chem. Int. Edit. 36 873

  7. (a) Grüttner B and Jander G 1962 Handbuch der Präparativen Anorganischen Chemie 2nd ed. (Stuttgart: Enke Verlag); (b) Khan M I and Zubieta J 1995 Oxovanadium and oxoolybdenum clusters and solids incorporating oxygen-donor ligands In Progress In Inorganic Chemistry Kenneth D Karlin (Ed.) Vol. 42 p. 1 (New York: John Wiley and Sons)

  8. (a) Yamase T 1998 Photo- and electrochromism of polyoxometalates and related materials Chem. Rev. 98 307; (b) Kumar A, Gupta A K, Devi M, Gonsalves K E and Pradeep C P 2017 Engineering multi-functionality in hybrid polyoxometalates: aromatic sulfonium octamolybdates as excellent photochromic materials and self-separating catalysis for epoxidation Inorg. Chem. 56 10325; (c) Kumar A, Bevi M, Mamidi N, Gonsalves K E and Pradeep C P 2015 Aromatic sulfonium polyoxometalates: a new class of solid state photochromic materials with tunable properties Chem. Eur. J. 21 18557; (d) Kalyani V, Satyanarayana V S V, Sarkar A S, Kumar A, Pal S K, Ghosh S, Gonsalves K E and Pradeep C P 2015 A radiation sensitive hybrid polymer based on Mn-Anderson polyoxometalate cluster and a UV activeorganic monomer: synergistic effects leads to improved photocurrent in a photoresponsive device RSC Adv. 5 36727; (e) Sahasrabudhe A and Roy S 2014 Photoactive gold nanoparticle softoxometalates (SOM) using a Keplerate for synthesis of polystyrene latex microspheres by photo-polymerization J. Mol. Eng. Mater. 2 1440002; (f) Das S, Misra A and Roy S 2016 Photo Redox Mediated Inexpensive One-Pot Synthesis of 1,4-Diphenyl Substituted Butane-1,4-Dione from Styrene using Polyoxometalates as Catalysts ChemistrySelect. 1 691; (g) Das S, Biswas S, Balaraju T, Barman S, Pochamoni R and Roy S 2016 Photochemical Reduction of Carbon Dioxide Coupled with Water Oxidation using Various Soft-oxometalate (SOM) based Catalytic Systems J. Mater. Chem. A 4 8875

  9. “Pyridine” IARC Monographs 77 1985 Washington DC: OSHA

  10. (a) Record of Pyridine, in the GESTIS Substance database of the IFA; (b) International Agency for Research in Cancer (IARC) Summaries and Evaluations 2007 IPCS INCHEM; (c) Bonnard N, Brondeau M T, Miraval S, Pilliere F, Protois J C and Schneider O 2001 Pyridine Fiche Toxicologique 85 1–5 (INRS); (d) Junk G A and Ford C S 1980 A review of organic emissions from selected combustion processes Chemosphere 9 187; (e) Clayton G D and Clayton F E 1993–1994 Patty’s Industrial Hygiene and Toxicology Vol. 2A, 2B, 2C, 2D, 2E, 2F: Toxicology 4th edn. (New York, NY: John Wiley & Sons Inc.)

  11. Gao T, Tillman E S and Lewis N S 2005 Detection and classification of volatile organic amines and carboxylic acids using arrays of carbon black-dendrimer composite vapor detectors Chem. Mater. 17 2904

    Article  CAS  Google Scholar 

  12. Seesaard T, Lorwongtragool P and Kerdcharoen T 2015 Development of fabric-based chemical gas sensors for use as wearable electronic noses Sensors 15 1885

    Article  CAS  Google Scholar 

  13. Ramos C X, Estévez S L and Giraldo E 2002 Removal of pyrene by different microalgal species Water Sci. Technol. 46 195

    CAS  Google Scholar 

  14. Rai P, Majhi S M, Yu Y T and Lee J H 2015 Synthesis of plasmonic \(\text{ Ag }@\text{ SnO }_{2}\)core-shell nanoreactors for xylene detection RSC Adv. 5 17653

  15. Mochalski P, King J, Klieber M, Unterkofler K, Hinterhuber H, Baumann M and Amann A 2013 Blood and breath levels of selected volatile organic compounds in healthy volunteers Analyst 138 2134

    Article  CAS  Google Scholar 

  16. Mazzatenta A, Pokorski M, Sartucci F, Domenici L and Giulio C D 2015 Volatile organic compounds (VOCs) fingerprint of Alzheimer’s disease Respir. Physiol. Neurobiol. 209 81

    Article  CAS  Google Scholar 

  17. Liu B, Zhang L, Zhao H, Chen Y and Yang H 2012 Synthesis and sensing properties of spherical flowerlike architectures assembled with \(\text{ SnO }_{2}\) submicron rods Sensor Actuat B-Chem. 173 643

    Article  CAS  Google Scholar 

  18. Guo T, Luo Y, Zhang Y, Lin Y-H and Nan C-W 2014 ZnO-NiO hetero-nanostructures as highly sensitive and selective triethylamine sensor J. Appl. Phys. 116 044309

    Article  Google Scholar 

  19. Tomer V K, Devi S, Malik R, Nehra S P and Duhan S 2016 Highly sensitive and selective volatile organic amine (VOA) sensors using mesoporous \(\text{ WO }_{3}-\text{ SnO }_{2}\) nanohybrids Sensor Actuat B-Chem. 229 321

    Article  CAS  Google Scholar 

  20. (a) Eda K and Iriki Y 2005 Crystal Engineering with \([\text{ Mo }_{36}\text{ O }_{112}(\text{ H }_{2}\text{ O })_{16}]^{8-}\) Anion as Nanosized Building Block Chem. Lett. 34 612; (b) Krebs B and Boschen I P 1982 The structure of the potassium isopolymolybdate \(\text{ K }_{8}[\text{ Mo }_{36}\text{ O }_{12}(\text{ H }_{2}\text{ O })_{16}].n\text{ H }_{2}\text{ O }\,({n}~= 36...40)\) Acta Crystallogr. B 38 1710

  21. (a) McCann M and Maddock K 1994 Synthesis and reactions of \([\text{ Et }_{3}\text{ NH }]_{4}[\text{ Mo }_{8}\text{ O }_{6}]\): X-ray crystal structure of \([\text{ Et }_{3}\text{ NH }]_{3}[\text{ NaMo }_{8}\text{ O }_{26}]\) Polyhedron 13 835; (b) McCarron E M, Whitney J F and Chase D B 1984 Pyridinium molybdates. Synthesis and structure of an octamolybdate containing coordinately bound pyridine: \([(\text{ C }_{5}\text{ H }_{5}\text{ N })_{2}\text{ Mo }_{8}\text{ O }_{26}]^{4-}\) Inorg. Chem. 23 3275; (c) Modec M, Brenčič J V and Zubieta J 2003 The solvatothermal synthesis and the crystal structure of polymeric \(N\)-methylpyridinium octamolybdate(VI), \((\text{ Me }-\text{ NC }_{5}\text{ H }_{5})_{4n}[\text{ Mo }_{8}\text{ O }_{26}]_{n}\) Inorg. Chem. Commun. 6 506; (d) Pan C-L, Song J-F, Xu J-Q, Li G-H, Ye L and Wang T-G 2003 Three-Dimensional open-framework cobalt–molybdenum phosphate by hydrothermal synthesis: \((\text{ C }_{2}\text{ H }_{9}\text{ N }_{2})_{4}(\text{ C }_{2}\text{ H }_{10}\text{ N }_{2})[\text{ Co }_{3}\text{ Mo }_{4}\text{ P }_{4}\text{ O }_{28}]\) Inorg. Chem. Commun. 6 535; (e) Niu J-Y, Wei M-L, Wang J-P and Dong D-B 2003 Synthesis and crystal structure of 1D polyoxometalate-based composite compound, \([\{\text{ Gd }(\text{ NMP })_{6}\}(\text{ PMo }_{12}\text{ O }_{40})]_{n}~(\text{ NMP }=N\text{-methyl-2-pyrrolidone })\) J. Mol. Struct. 655 171

  22. (a) Fuchs J and Hartl H 1976 Anion structure of tetrabutyl ammonium octamoybdate \([\text{ N }(\text{ C }4\text{ H }_{9})_{4}]_{4}\text{ Mo }_{8}\text{ O }_{26}\) Angew. Chem. Int. Ed. Engl. 15 375; (b) Bharadwaj P K, Ohashi Y, Sasadi Y, Sasaki Y and Yamase T 1984 Structure ofoxonium tris-(tri-ethylammonium) octamolybdate(4–) dihydrate, \((\text{ C }_{6}\text{ H }_{16})_{3}(\text{ H }_{3}\text{ O })[\text{ Mo }_{8}\text{ O }_{26}].2\text{ H }_{2}\text{ O }\) Acta Cryst. Sect. C 40 48; (c) Hsieh T and Zubieta J 1985 Synthesis and characterization of oxomolybdate clusters containing co-ordinatively bound diazenido units. The crystal and molecular structur of the octanuclear oxomolybdate \((\text{ NHEt }_{3})_{2}(\text{ NBu }_{4})_{2}[\text{ Mo }_{8}\text{ O }_{20}(\text{ NNPh })_{6}]\) J. Chem. Soc. Chem. Commun. 1749; (d) Roman P, Gutierrez-Zorilla J M, Martinz-Rippol M and Garcia-Blanco S 1986 Structure of 2-methyl-pyridinium \(\upbeta \)-octamolybdate(VI) Acta Cryst. Sect. C 42 956; (e) Hsieh T, Shaikh S N and Zubieta J 1987 Derivatized polyoxomolybdates. Synthesis and characterization of oxomolybdate clusters containing coordinatively bounddiazenido units. Crystal and molecular structure of the octanuclear oxomolybdate \((\text{ NHEt }_{3})_{2}(\text{ n-Bu }_{4}\text{ N })_{2}[\text{ Mo }_{8}\text{ O }_{20}(\text{ NNPh })_{6}]\) and comparison to the structures of the parent oxomolybdate alpha.-\((\text{ n-Bu }_{4}\text{ N })_{4}[\text{ Mo }_{8}\text{ O }_{26}]\) and the tetranuclear (diazenido)oxomolybdates \((\text{ n-Bu }_{4}\text{ N })_{2}[\text{ Mo }_{4}\text{ O }_{10}(\text{ OMe })_{2}(\text{ NNPh })_{2}]\) and \((\text{ n-Bu }_{4}\text{ N })_{2}[\text{ Mo }_{4}\text{ O }_{8}(\text{ OMe })_{2}(\text{ NNC }_{6}\text{ H }_{4}\text{ NO }_{2})_{4}]\) Inorg. Chem. 26 4079; (f) McCann M, Maddock K, Cardin C, Convery M and Ferguson G 1995 Synthesis and X-ray crystal structure of the triethylammonium magnesium \(\upbeta \)-octamolybdate(VI) salt \([\text{ Et }_{3}\text{ NH }]_{2}[\text{ Mg }(\text{ H }_{2}\text{ O })_{6}\text{ Mo }_{8}\text{ O }_{26}]\cdot 2\text{ H }_{2}\text{ O }\) Polyhedron 14 3655; (g) Wang X-J, Kang B S, Su C Y, Yu K B, Zhang H X and Chen Z N 1999 Function of the hydrogen bond in the conversion of \(\upalpha \)- to \(\upbeta \text{-Mo }_{8}\text{ O }_{26}^{4-}\) ions: Formation and structure of tetra(tributylhydrogenammonium) \(\upbeta \)-octamolybdate Polyhedron 18 3371

  23. (a) Xu X-X and You Z-X 1994 The crystal structure of tetra(piperidinium) octamoybdate(VI) tetrahydrate Polyhedron 13 1011; (b) Kaziev G Z, Dutov A A, Quynones S H, Belsky, Zavodnik V E and Karamnov M A 2003 X-Ray Diffraction Study of Piperidine Octamolybdate J. Struct. Chem. 44 889

  24. Ding Y, Lu F and Han X 2012 Study on Catalytic oxidation of benzaldehyde to benzoic acid with keggin polyoxometalate \([(\text{ CH }_{2})_{5}\text{ NH }_{2}]_{4}\text{ SiW }_{12}\text{ O }_{40}\) Appl. Mech. Mater. 161 185

    Article  CAS  Google Scholar 

  25. (a) Miao H, Dong Y, Chen Z, He X, Hu G and Xu Y 2016 Design, synthesis and excellent third-order NLO properties of two new polyoxometalates constructed from Keggin polyanions bonded by a solvent molecule Dalton Trans. 45 12717; (b) Emirdag-Eanes M, Onen B and McMillen D 2015 Hydrothermal synthesis and characterization of one dimensional chain structures of monolacunary Keggin polyoxoanions substituted with copper Inorg. Chim. Acta 427 219; (c) Liu T and Hou J H 2014 Direct hydroxylation of benzene to phenol over pyridine-modified vanadium-substituted heteropoly acid under microwave condition Asian J. Chem. 26 2683; (d) Liu X, Nie H, Wang L and Huang R 2013 Three inorganic–organic hybrid compounds based on Keggin polyoxometalate and transition metal complexes: crystal structures and electrochemical properties J. Coord. Chem. 66 444

  26. SAINT 1998 Software for the CCD Detector System; Bruker Analytical X-ray Systems, Inc.: Madison, WI

  27. Sheldrick G M 1997 SHELXS-97, Program for Structure Solution; University of Gottingen: Gottingen, Germany

    Google Scholar 

  28. Sheldrick G M 1997 SHELXL-97, Program for Crystal Structure Analysis; University of Gottingen: Gottingen, Germany

    Google Scholar 

Download references

Acknowledgements

We thank the Department of Science and Technology, Government of India, for financial support (Project No. SB/IC-34/2013). The National X-ray Diffractometer facility at University of Hyderabad by the Department of Science and Technology, Government of India, is gratefully acknowledged. We acknowledge UGS-CAS, DST-PURSE and DST-FIST. V. S. and N. T. K. thank CSIR, New Delhi for their fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samar K Das.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 380 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivaiah, V., Kumar, N.T. & Das, S.K. A gas–liquid interface synthesis in polyoxometalate chemistry: potential bag filter for volatile organic amines. J Chem Sci 130, 37 (2018). https://doi.org/10.1007/s12039-018-1435-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1435-2

Keywords

Navigation