Advertisement

Journal of Chemical Sciences

, Volume 129, Issue 10, pp 1627–1637 | Cite as

Catalytic aspects of a copper(II) complex: biological oxidase to oxygenase activity

Regular Article

Abstract

A coper(II) complex, \(\hbox {[Cu(dpa)}_{2}\hbox {(OAc)](ClO}_{4})\) (1) [dpa =\( 2,2^\prime \)-dipyridylamine; OAc \(=\) acetate], has been synthesized and crystallographically characterized. X-ray structure analysis revealed that this mononuclear Cu(II) complex crystallizes as a rare class of hexa coordination geometry named bicapped square pyramidal geometry with \(P2_{1}/\hbox {c}\) space group. This copper complex displays excellent catalytic efficiency, \(\hbox {k}_{\mathrm{cat}}/\hbox {K}_{\mathrm{M} }(\hbox {h}^{-1}) = 6.17\times 10^{5}\) towards the oxidative coupling of 2-aminophenol (2-AP) to aminophenoxazin-3-one. Further, upon stoichiometric addition of copper(II) complex to 3,5-DTBC in presence of molecular oxygen in ethanol medium, the copper complex affords predominantly extradiol cleavage products along with a small amount of benzoquinone and a trace amount of intradiol cleavage products at a rate, \(\hbox {k}_{\mathrm{obs}}= 1.09\times 10^{-3}\) \(\hbox {min}^{-1}\), which provide substantial evidence for the oxygen activation mechanism. This paper presents a novel addition of a copper(II) complex having the potential to mimic the active site of phenoxazinone synthase and catechol dioxygenase enzymes with significant catalytic efficiency.

Graphical Abstract

SYNOPSIS The mononuclear copper complex having unusual hexa coordination geometry exhibits significant catalytic efficiency, \(\hbox {k}_{\mathrm{cat}}/\hbox {K}_{\mathrm{M}}(\hbox {h}^{-1}) = 6.17\times 10^{5}\) towards oxidation of 2-aminophenol which predominantly produced extradiol cleavage products at a rate, \(\hbox {k}_{\mathrm{obs}}= 1.09\times 10^{-3}\) \(\hbox {min}^{-1}\) upon addition of 3,5-DTBC in presence of molecular oxygen.

Keywords

Copper(II) crystal structure phenoxazinone synthase activity catechol dioxygenase bio-mimetic chemistry 

Notes

Acknowledgements

BB sincerely thanks Science & Engineering Research Board (SERB), a statutory body of Department of Science & Technology (DST), New Delhi for the financial support under the START UP GRANT for YOUNG SCIENTIST (No. SB/FT/CS-088/2013 dtd. 21/05/2014). BB is greatly indebted to Prof. T.K. Paine, Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India for his valuable help in recording solid state EPR spectrum at 77 K. BB thanks Dr. Angshuman Roy Choudhury of IISER Mohali, Mohali 140 306, India for helping to collect crystallographic data of the copper complex.

Supplementary material

12039_2017_1379_MOESM1_ESM.doc (2.1 mb)
Supplementary material 1 (doc 2101 KB)

References

  1. 1.
    (a) Kaim W and Schwederski B 1993 Bioanorganische Chemie, Teubner, Stuttgart Bioinorganic Catalysis J Reedijk (Ed.) (New York: Marcel Dekker); (b) Biswas B, Patra M, Dutta S, Ganguly M and Kole N 2013 Synthesis, structural characterization and biological activity of a trinuclear zinc(II) complex: DNA interaction study and antimicrobial activity J. Chem. Sci. 125 1445; (c) Dey D, Basu Roy A, Shen C-Y, Tsai H-L, Ranjani A, Gayathri L, Chandraleka S, Dhanasekaran D, Akbarsha M A, Kole N and Biswas B 2015 Synthesis and bio-catalytic activity of isostructural cobalt(III)-phenanthroline complexes J. Chem. Sci. 127 649; (d) Das S, Pasan J, Gayathri L, Saha S, Chandraleka S, Maji M, Dhanasekaran D, Akbarsha M A, Kole N and Biswas B 2016 Recognition of self-assembled water-nitrate cluster in a Co(III)-2,2’-bipyridine host: synthesis, crystal structure, DNA cleavage, molecular docking and anticancer activity J. Chem. Sci. 128 1755Google Scholar
  2. 2.
    (a) Klinman J P 1996 Mechanisms whereby mononuclear copper proteins functionalize organic substrates Chem. Rev. 96 2541; (b) Dey D, Kaur G, Ranjani A, Gyathri L, Chakraborty P, Adhikary J, Pasan J, Dhanasekaran D, Choudhury A R, Akbarsha M A, Kole N and Biswas B 2014 A trinuclear zinc–schiff base complex: biocatalytic activity and cytotoxicity Eur. J. Inorg. Chem. 3350; (c) Chowdhury B, Patra M, Maji M and Biswas B 2015 Ligand centered radical pathway in catechol oxidase activity with a trinuclear zinc-based model: synthesis, structural characterization and luminescence properties Spectrochim. Acta Part A Mol Biomol. Spect. 144 148Google Scholar
  3. 3.
    (a) Solomon E I, Sundaram U and Machonkin T E 1996 Multicopper oxidases and oxygenases Chem. Rev. 96 2563; (b) Biswas B, Al-Hunaiti A, Räisänen M T, Ansalone S, Leskelä M, Repo T, Chen Y-T, Tsai H-L, Naik A D, Railliet A P, Garcia Y, Ghosh R and Kole N 2012 Efficient and selective oxidation of primary and secondary alcohols using an iron(III)/phenanthroline complex: structural studies and catalytic activity Eur. J. Inorg. Chem. 4479; (c) Pal A, Biswas B, Mitra M, Purohit C S, Hazra S, Kumar G S, Ghosh R 2013 Synthesis, X-ray structure and DNA binding of a mononuclear iron(II) Schiff base complex J. Chem. Sci. 125 1161Google Scholar
  4. 4.
    Magnus K A, Ton-That H and Carpenter J E 1994 Recent structural work on the oxygen transport protein hemocyanin Chem. Rev. 94 727CrossRefGoogle Scholar
  5. 5.
    Sa’nchez-Ferrer A, Rodrı’guez-Lo’pez J N, Garcı’a-Ca’novas F and Garcı’aCarmona F 1995 Tyrosinase: a comprehensive review of its mechanism Biochim. Biophys. Acta 1 1247Google Scholar
  6. 6.
    Gerdemann C, Eicken C and Krebs B 2002 The crystal structure of catechol oxidase: new insight into the function of type-3 copper proteins Acc. Chem. Res. 35 183CrossRefGoogle Scholar
  7. 7.
    Fusetti F, Schröter K H, Steiner R A, van Noort P I, Pijning T, Rozeboom H J, Kalk K H, Egmond M R and Dijkstra B W 2002 crystal structure of the copper-containing quercetin 2,3-dioxygenase from Aspergillus japonicus Structure 10 259CrossRefGoogle Scholar
  8. 8.
    Steiner R A, Kooter I M and Dijkstra B W 2002 Functional analysis of the copper-dependent quercetin 2,3-dioxygenase. 1. Ligand-induced coordination changes probed by X-ray crystallography: inhibition, ordering effect, and mechanistic insights Biochemistry 41 7955CrossRefGoogle Scholar
  9. 9.
    Kooter I M, Steiner R A, Dijkstra B W, van Noort P I, Egmund M R and Huber M 2002 EPR characterization of the mononuclear Cu-containing Aspergillus japonicus quercetin 2,3-dioxygenase reveals dramatic changes upon anaerobic binding of substrates Eur. J. Biochem. 269 2971CrossRefGoogle Scholar
  10. 10.
    Stewart L C and Klinman J P 1988 Dopamine beta-hydroxylase of adrenal chromaffin granules: structure and function Annu. Rev. Biochem. 57 551CrossRefGoogle Scholar
  11. 11.
    Prigge S T, Mains R E, Eipper B A and Amzel L M 2000 New insights into copper monooxygenases and peptide amidation: structure, mechanism and function Cell. Mol. Life Sci. 57 1236CrossRefGoogle Scholar
  12. 12.
    Blackburn N J, Rhames F C, Ralle M and Jaron S 2000 Major changes in copper coordination accompany reduction of peptidylglycine monooxygenase: implications for electron transfer and the catalytic mechanism J. Biol. Inorg. Chem. 5 341CrossRefGoogle Scholar
  13. 13.
    Whittaker J W 2003 Free radical catalysis by galactose oxidase Chem. Rev. 103 2347CrossRefGoogle Scholar
  14. 14.
    Whittaker J W and Whittaker M M 1998 Radical copper oxidases: one electron at a time Pure Appl. Chem. 70 903CrossRefGoogle Scholar
  15. 15.
    Knowles P F and Ito N 1994 In Perspectives in Bio-inorganic Chemistry (London: Jai Press) Vol. 2 p. 207Google Scholar
  16. 16.
    Halcrow M, Phillips S and Knowles P 2000 In Subcellular Biochemistry, 35, Enzyme-Catalyzed Electron and Radical Transfer A Holzenburg and N S Scrutton (Eds.) (New York: Plenum) 183Google Scholar
  17. 17.
    Whittaker M M, Kersten P J, Nakamura N, Sanders-Loehr J, Schweizer E S and Whittaker J W 1996 Glyoxal oxidase from phanerochaete chrysosporium is a new radical-copper oxidase J. W. J. Biol. Chem. 271 681CrossRefGoogle Scholar
  18. 18.
    Whittaker M M, Kersten P J, Cullen D and Whittaker J W 1999 Identification of catalytic residues in glyoxal oxidase by targeted mutagenesis J. Biol. Chem. 274 36226CrossRefGoogle Scholar
  19. 19.
    Kosman D J, Hassett R, Yuan D S and McCracken J 1998 Spectroscopic characterization of the Cu (II) sites in the Fet3 protein, the multinuclear copper oxidase from yeast required for high-affinity iron uptake J. Am. Chem. Soc. 120 4037CrossRefGoogle Scholar
  20. 20.
    Blackburn N J, Ralle M, Hassett R and Kosman D 2000 Spectroscopic analysis of the trinuclear cluster in the Fet3 protein from yeast, a multinuclear copper oxidase J. Biochemistry 39 2316CrossRefGoogle Scholar
  21. 21.
    Palmer A E, Quintanar L, Severancee S, Wang T-P, Kosman D J and Solomon E I 2002 Spectroscopic characterization and \(\text{ O }_{2}\) reactivity of the trinuclear Cu cluster of mutants of the multicopper oxidase Fet3p Biochemistry 41 6438CrossRefGoogle Scholar
  22. 22.
    Nguyen H-H T, Nakagawa K H, Hedman B, Eliot S J, Lidstrom M E, Hodgson K O and Chan S I 1996 X-ray absorption and EPR studies on the copper ions associated with the particulate methane monooxygenase from Methylococcus capsulatus (Bath). Cu(I) ions and their implications J. Am. Chem. Soc. 118 12766CrossRefGoogle Scholar
  23. 23.
    Elliott S J, Randall D W, Britt R D and Chan S I 1998 Pulsed EPR studies of particulate methane monooxygenase from Methylococcus capsulatus (Bath): evidence for histidine ligation J. Am. Chem. Soc. 120 3247CrossRefGoogle Scholar
  24. 24.
    Nguyen H-H T, Elliot S J, Yip J H-K and Chan S I 1998 The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme isolation & characterization J. Biol. Chem. 273 7957CrossRefGoogle Scholar
  25. 25.
    Lieberman RL, Shrestha D B, Doan P E, Hoffman B M, Stemmler T L and Rosenzweig A C 2003 Purified particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a dimer with both mononuclear copper and a copper-containing cluster Proc. Natl. Acad. Sci. U.S.A. 100 3820CrossRefGoogle Scholar
  26. 26.
    (a) Katz E 1967 Biosynthesis of secondary metabolites: roles of trace metals In Antibiotics II D Gottlieb D and P D Shaw (Eds.) p. 276 (New York: Springer); (b) McLain J, Lee J, Groves J T 2000 Biomimetic oxidations catalyzed by transition metal complexes In Biomimetic Oxidations Catalyzed by Transition Metal Complexes B Meunier (Ed.) (London: Imperial College Press); (c) Simándi T M, Simándi L I, Győr M, Rockenbauer A and Gömöry Á 2004 Kinetics and mechanism of the ferroxime (II)-catalysed biomimetic oxidation of 2-aminophenol by dioxygen. A functional phenoxazinone synthase model Dalton Trans. 1056–1060Google Scholar
  27. 27.
    (a) Hollstein U 1974 Actinomycin. Chemistry and mechanism of action Chem. Rev. 74 625; (b) Simándi L I, Németh S and Rumlis N 1987 Study of the oxidation of 2-aminophenol by molecular oxygen catalyzed by cobalt (II) phthalocyaninetetrasodiumsulfonate in water J. Mol. Catal. 42 357Google Scholar
  28. 28.
    (a) Butenandt A 1957 Über Ommochrome, eine Klasse natürlicher Phenoxazon-Farbstoffe Angew. Chem. 69 16; (b) Simándi TM, Simándi LI, Győr M, Rockenbauer A, Gömöry A, 2004 Kinetics and mechanism of the ferroxime (II)-catalysed biomimetic oxidation of 2-aminophenol by dioxygen. A functional phenoxazinone synthase model J. Chem. Soc. Dalton Trans. 1056Google Scholar
  29. 29.
    (a) Cavill G W K, Clezy P S, Tetaz J R and Werner R L 1959 Synthesis of novel angular diazaphenoxazinone derivatives via palladium catalyzed Buchwald-Hartwig amidation protocols Tetrahedron 5 275; (b) Kaizer J, Csonka R and Speier G 2002 TEMPO-initiated oxidation of 2-aminophenol to 2-aminophenoxazin-3-one J. Mol. Catal. A: Chem. 180 91Google Scholar
  30. 30.
    (a) Que L, Jr, Lipscomb J D, Münck E and Wood J M 1977 Protocatechuate 3,4-dioxygenase: inhibitor studies and mechanistic implications Biochim. Biophys. Acta 485 60Google Scholar
  31. 31.
    (a) Ohlendorf D H, Lipscomb J D and Weber P C 1988 Structure and assembly of protocatechuate 3, 4-dioxygenase Nature 336 403; (b) Solomon E I, Sundaram U M, Machonkin T E 1996 Multicopper oxidases and oxygenases Chem. Rev. 96 2563; (c) Ohlendorf D H, Orville A M and Lipscomb J D 1994 Structure of protocatechuate 3, 4-dioxygenase from Pseudomonas aeruginosa at 2.15 Å resolution J. Mol. Biol. 244 586; (d) Valley M P, Brown C K, Burk D L, Vetting M W, Ohlendorf D H and Lipscomb J D 2005 Roles of the equatorial tyrosyl iron ligand of protocatechuate 3, 4-dioxygenase in catalysis Biochemistry 44 11024Google Scholar
  32. 32.
    (a) Youngme S, Phuengphai P, Chaichit N, Mutikainen I, Turpeinen U and Murphy B M 2007 Crystal structures and electronic properties of three fluxional \([\text{ Cu(di-2-pyridylamine })_{2}\text{(OXO)]Y }\) complexes J. Coord. Chem. 60 131; (b) Choudhury S R, Chen C-Y, Seth S, Kar T, Lee HM, Colaciu E and Mukhopadhyay S 2009 Anion-\(\uppi \) interaction stitching 2-D layers formed by self-assembly of cations of a mononuclear copper(II) complex: synthesis, crystal structure and magnetism of \([\text{ Cu(OAc)(2,2 }^\prime -\text{ dypam) }_{2}](\text{ ClO }_{4})\) [HOAc = acetic acid, \(2,2^\prime \)-dypam = \(\text{2,2 }^\prime \)-dipyridylamine] J. Coord. Chem. 62 540Google Scholar
  33. 33.
    CrystalClear 2.0; Rigaku Corporation: Tokyo, Japan.Google Scholar
  34. 34.
    Sheldrick GM, 2008 Crystal structure refinement with SHELXL Acta Cryst. A 64 112CrossRefGoogle Scholar
  35. 35.
    Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K and Puschmann H 2009 OLEX2: a complete structure solution, refinement and analysis program J. Appl. Cryst. 42 339CrossRefGoogle Scholar
  36. 36.
    (a) Paria S, Halder P and Paine T K 2010 A functional model of extradiol-cleaving catechol dioxygenases: mimicking the 2-his-1-carboxylate facial triad Inorg. Chem. 49 4518–4523; (b) De A, Garai M, Yadav H R, Choudhury A R and Biswas B 2017 Catalytic promiscuity of an iron (II)phenanthroline complex Appl. Organometal. Chem. 31  10.1002/aoc.3551
  37. 37.
    (a) Sawyer D T 1991 Oxygen Chemistry (New York: Oxford University Press); (b) Mialane P, Tehertanov L, Banse F, Sainton J and Girerd J 2000Aminopyridine iron catecholate complexes as models for intradiol catechol dioxygenases. Synthesis, structure, reactivity, and spectroscopic studies Inorg. Chem. 39 2440Google Scholar
  38. 38.
    Fereday R J, Hodgson P, Tyagi S and Hathaway B J 1981 The crystal structure and electronic properties of bis (2, 2’-bipyridyl)-copper (II) bis (hexafluorophosphate) J. Inorg. Nucl. Chem. Lett. 17 243CrossRefGoogle Scholar
  39. 39.
    De A, Dey D, Yadav H R, Maji M, Rane V, Kadam R M, Choudhury A R and Biswas B 2016 Unprecedented hetero-geometric discrete copper (II) complexes: crystal structure and bio-mimicking of Catecholase activity J. Chem. Sci. 128 1775CrossRefGoogle Scholar
  40. 40.
    (a) Mukherjee C, Weyhermuller T, Bothe E, Rentschler E and Chaudhury P 2007 A Tetracopper (II)-tetraradical cuboidal core and its reactivity as a functional model of phenoxazinone synthase Inorg. Chem. 46 9895; (b) Barry C E, Nayar P G and Begley T G 1989 A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase Biochemistry 28 6323Google Scholar
  41. 41.
    (a) Chatterjee S, Sheet D and Paine T K 2013 An oxido-bridged diiron (II) complex as functional model of catechol dioxygenase Chem. Commun. 49 10251; (b) Balamurugan M, Vadivelu P and Palaniandavar M 2014 Iron (III) complexes of tripodal tetradentate 4N ligands as functional models for catechol dioxygenases: the electronic vs. steric effect on extradiol cleavage Dalton Trans. 43 14653Google Scholar
  42. 42.
    (a) Ito M and Que L Jr. 1997 Angew. Chem. Int. Ed. Engl. 36 1342; (b) Dey D, De A, Yadav H R, Guin P S, Choudhury A R, Kole N and Biswas B 2016 ChemistrySelect 01 1910; (c) Dey D, Das S and Biswas B 2016 J. Indian Chem. Soc. 93 495Google Scholar
  43. 43.
    Ito M and Que L Jr. 1997 Biomimetic extradiol cleavage of catechols: insights into the enzyme mechanism Angew. Chem. Int. Ed. Engl. 36 1342CrossRefGoogle Scholar
  44. 44.
    Funabiki T, Mizoguchi A, Sugimoto T, Tada S, Tsuji M, Sakamoto H and Yoshida S 1986 Oxygenase model reactions. 1. Intra-and extradiol oxygenations of 3, 5-di-tert-butylcatechol catalyzed by (bipyridine)(pyridine) iron (III) complex J. Am. Chem. Soc. 108 2921CrossRefGoogle Scholar
  45. 45.
    Die A, Gatteschi D and Pardi L 1993 Synthesis, characterization, and reactivity of catecholato adducts of iron(III) triaza- and tetraazamacrocyclic complexes:chemical evidence of the role of the metal ion in the oxidative cleavage Inorg. Chem. 32 1389Google Scholar
  46. 46.
    Pascaly M, Duda M, Rompel A, Sift BH, Meyer-Klaucke W and Krebs B 1999 Novel iron (III) complexes with imidazole containing tripodal ligands as model systems for catechol dioxygenases Inorg. Chim. Acta 291 289Google Scholar
  47. 47.
    Pascaly M, Nazikkol C, Schweppe F, Wiedemann A, Zurlinden K and Krebs B 2000 Structures and properties of novel mononuclear iron(III) complexes with benzimidazole containing tripodal tetradentate ligands Z. Anorg. Allg. Chem. 626 50CrossRefGoogle Scholar
  48. 48.
    Nishida Y, Shimo H and Kida S 1994 Synthesis, structural characterization, and extradiol oxygenation of iron-catecholato complexes with hydrotris (pyrazolyl) borate ligands J. Chem. Soc. Chem. Commun. 1611 Google Scholar
  49. 49.
    Viswanathan R, Palaniandavar M, Balasubramanian T and Mutiah T P 1999 Functional models for catechol 1, 2-dioxygenase. Synthesis, structure, spectra, and catalytic activity of certain tripodal iron (III) complexes Inorg. Chem. 37 2943CrossRefGoogle Scholar
  50. 50.
    Pascaly M, Duda M, Schweppe F, Zurlinden K, Müller F K and Krebs B 2001 The systematic influence of tripodal ligands on the catechol cleaving activity of iron (III) containing model compounds for catechol 1, 2-dioxygenases J. Chem. Soc. Dalton Trans. 828 Google Scholar
  51. 51.
    Dey D, Das S, Yadav H R, Ranjani A, Gyathri L, Roy S, Guin P S, Dhanasekaran D, Choudhury A R, Akbarsha M A and Biswas B 2016 Design of a mononuclear copper (II)-phenanthroline complex: catechol oxidation, DNA cleavage and antitumor properties Polyhedron 106 106CrossRefGoogle Scholar
  52. 52.
    Speier G, Tyeklár Z, Szabo Ĺ, Tóth P, Pierpont C G and Hendrickson D N 1993 In The Activation of Dioxygen and Homogeneous Catalytic Oxidation D H R Barton, A E Martell and D T Sawyer (Eds.) (New York: Plenum Press) pp. 423–436Google Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  • Biswajit Chowdhury
    • 1
  • Milan Maji
    • 3
  • Bhaskar Biswas
    • 1
    • 2
  1. 1.Department of ChemistryRaghunathpur CollegePuruliaIndia
  2. 2.Department of ChemistrySurendranath CollegeKolkataIndia
  3. 3.Department of ChemistryNational Institute of TechnologyDurgapurIndia

Personalised recommendations