Advertisement

Journal of Chemical Sciences

, Volume 129, Issue 10, pp 1611–1626 | Cite as

Resolution of the Identity and Cholesky Representation of EOM-MP2 Approximation: Implementation, Accuracy and Efficiency

Regular Article
  • 124 Downloads

Abstract

We present a Resolution of Identity and Cholesky Decomposition Based Implementation of EOM-MP2 approximation. The RI and CD based EOM-MP2 shows significant speed-up and less storage requirement than the conventional canonical version and can be applied to very large systems. The new algorithm used for this implementation eliminates the most storage requiring four-index quantities resulting in the decrease of storage requirement, reduction in I/O penalties and improved parallel performance, at the expense of more floating point operations. Therefore, the speed-up compared to conventional EOM-MP2 method is more prominent in case of EA, EE and SF case where the storage bottleneck is significant than the EOM-IP-MP2 method, where the storage requirement is significantly less. However, the RI/CD based EOM-IP-MP2 can be coupled with frozen natural orbitals to gain further speed-up.

Graphical Abstract

Synopsis: We present RI/CD implementation on EOM-MP2 method for computing IP, EA, EE and SF target electronic states of molecules. The RI/CD implementation results in speed-up in computational time and reduction in storage requirements without much compromise on accuracy, thereby widening the applicability of the method to molecules of bigger computional size.

Keywords

Resolution-of-identity RI Cholesky decomposition CD equation-of-motion EOM, CC MP2 electron correlation excited state ionization electron attachment spinflip IP EA EE SF 

Notes

Acknowledgements

The authors are thankful to Prof. Anna I. Krylov for discussions and her valuable suggestions. PUM and DK acknowledge the Department of Science and Technology, India for financial support under the grant no. SR/FT/CS-18/2011.

Supplementary material

12039_2017_1378_MOESM1_ESM.txt (19 kb)
Supplementary material 1 (txt 19 KB)

References

  1. 1.
    Shavitt I and Bartlett R J 2009 Many-Body Methods in Chemistry and Physics (Cambridge University Press: Cambridge)CrossRefGoogle Scholar
  2. 2.
    Helgaker T, Jørgensen P and Olsen J 2014 Molecular Electronic-Structure Theory (Wiley: Hoboken)Google Scholar
  3. 3.
    Rowe D J 1968 Equations-of-motion method and the extended shell model Rev. Mod. Phys. 40 153CrossRefGoogle Scholar
  4. 4.
    Trofimov A B Krivdina I L, Weller J and Schirmer J 2006 Algebraic-diagrammatic construction propagator approach to molecular response properties Chem. Phys. 329 1CrossRefGoogle Scholar
  5. 5.
    Bozkaya U 2013 The extended Koopmans theorem for orbital-optimized methods: accurate computation of ionization potentials J. Chem. Phys. 139 154105Google Scholar
  6. 6.
    Bozkaya U 2014 Accurate electron affinities from the extended Koopmans theorem based on orbital-optimized methods J. Chem. Theory Comput. 10 2041CrossRefGoogle Scholar
  7. 7.
    Geertsen J, Rittby M and Bartlett R J 1989 The equation-of-motion coupled-cluster method: excitation energies of Be and CO Chem. Phys. Lett. 164 57CrossRefGoogle Scholar
  8. 8.
    Stanton J F and Bartlett R J 1993 The equation of motion coupledcluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties J. Chem. Phys. 98 7029CrossRefGoogle Scholar
  9. 9.
    Krylov A I 2008 Equation-of-motion coupled-cluster methods for open-shell and electronically excited species: the hitchhiker’s guide to Fock space Annu. Rev. Phys. Chem. 59 433CrossRefGoogle Scholar
  10. 10.
    Nooijen M and Bartlett R J 1995 Equation of motion coupled cluster method for electron attachment J. Chem. Phys. 102 3629CrossRefGoogle Scholar
  11. 11.
    Kowalski K and Piecuch P 2000 The active-space equation-of-motion coupled-cluster methods for excited electronic states: the EOMCCSDt approach J. Chem. Phys. 113 8490CrossRefGoogle Scholar
  12. 12.
    Bartlett R J 2012 Coupled-cluster theory and its equation-of-motion extensions Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 126CrossRefGoogle Scholar
  13. 13.
    Pal S and Mukherjee D 1989 Use of cluster expansion methods in the openshell correlation problem Adv. Quantum Chem. 20 291CrossRefGoogle Scholar
  14. 14.
    Pal S, Rittby M, Bartlett R J, Sinha D and Mukherjee D 1988 Molecular applications of multireference coupledcluster methods using an incomplete model space: direct calculation of excitation energies J. Chem. Phys. 88 4357CrossRefGoogle Scholar
  15. 15.
    Pal S 2010 Fock space multi-reference coupled-cluster method for energies and energy derivatives Mol. Phys. 108 3033CrossRefGoogle Scholar
  16. 16.
    Meissner L 1998 Fock-space coupled-cluster method in the intermediate Hamiltonian formulation: model with singles and doubles J. Chem. Phys. 108 9227CrossRefGoogle Scholar
  17. 17.
    Musial M and Bartlett R J 2008 Intermediate Hamiltonian Fock-space multireference coupled-cluster method with full triples for calculation of excitation energies J. Chem. Phys. 129 044101CrossRefGoogle Scholar
  18. 18.
    Musial M and Bartlett R J 2008 Multireference Fock-space coupled-cluster and equation-of-motion coupled-cluster theories: the detailed interconnections J. Chem. Phys. 129 134105CrossRefGoogle Scholar
  19. 19.
    Christiansen O, Koch H and Jørgensen P 1995 Response functions in the CC3 iterative triple excitation model J. Chem. Phys. 103 7429CrossRefGoogle Scholar
  20. 20.
    Kucharski S A, Woch M, Musia M and Bartlett R J 2001 Coupled-cluster theory for excited electronic states: the full equation-of-motion coupled-cluster single, double, and triple excitation method J. Chem. Phys. 115 8263CrossRefGoogle Scholar
  21. 21.
    Manohar P U and Krylov A I 2008 A noniterative perturbative triples correction for the spin-flipping and spin-conserving equation-of-motion coupled-cluster methods with single and double substitutions J. Chem. Phys. 129 194105CrossRefGoogle Scholar
  22. 22.
    Manohar P U, Stanton J F and Krylov A I 2009 Perturbative triples correction for the equation-of-motion coupled-cluster wave functions with single and double substitutions for ionized states: theory, implementation, and examples J. Chem. Phys. 131 114112CrossRefGoogle Scholar
  23. 23.
    Woch M, Lodriguito M D, Piecuch P, and Gour J R 2006 Two new classes of non-iterative coupled-cluster methods derived from the method of moments of coupled-cluster equations Mol. Phys. 104 2149CrossRefGoogle Scholar
  24. 24.
    Gour J R, Piecuch P and Włoch M 2005 Active-space equation-of-motion coupled-cluster methods for excited states of radicals and other open-shell systems: EA-EOMCCSDt and IP-EOMCCSDt J. Chem. Phys. 123 134113CrossRefGoogle Scholar
  25. 25.
    Kowalski K and Piecuch P 2002 Extension of the method of moments of coupled-cluster equations to excited states: the triples and quadruples corrections to the equation-of-motion coupled-cluster singles and doubles energies J. Chem. Phys. 116 7411CrossRefGoogle Scholar
  26. 26.
    Stanton J F and Gauss J A 1996 A simple correction to final state energies of doublet radicals described by equation-of-motion coupled cluster theory in the singles and doubles approximation Theor. Chim. Acta 93 303CrossRefGoogle Scholar
  27. 27.
    Kállay M and Gauss J 2004 Calculation of excited-state properties using general coupled-cluster and configuration-interaction models J. Chem. Phys. 121 9257CrossRefGoogle Scholar
  28. 28.
    Dutta A K, Pal S and Ghosh D 2013 Perturbative approximations to single and double spin flip equation of motion coupled cluster singles doubles methods J. Chem. Phys. 139 124116CrossRefGoogle Scholar
  29. 29.
    Dutta A K, Vaval N and Pal S 2013 Performance of the EOMIP-CCSD (2) method for determining the structure and properties of doublet radicals: a benchmark investigation J. Chem. Theory Comput. 9 4313CrossRefGoogle Scholar
  30. 30.
    Dutta A K, Gupta J, Pathak H, Vaval N and Pal S 2014 Partitioned EOMEA-MBPT (2): an efficient N 5 scaling method for calculation of electron affinities J. Chem. Theory Comput. 10 1923CrossRefGoogle Scholar
  31. 31.
    Dutta A K, Vaval N and Pal S 2015 EOMIP-CCSD (2)*: an efficient method for the calculation of ionization potentials J. Chem. Theory Comput. 11 2461CrossRefGoogle Scholar
  32. 32.
    Bhattacharya D, Dutta A K, Gupta J and Pal S 2015 Perturbative order analysis of the similarity transformed Hamiltonian in Fock-space coupled cluster theory: difference energy and electric response properties Mol. Phys. 113 2046CrossRefGoogle Scholar
  33. 33.
    Bartlett R J 1981 Many-body perturbation theory and coupled cluster theory for electron correlation in molecules Annu. Rev. Phys. Chem. 32 359CrossRefGoogle Scholar
  34. 34.
    Kucharski S A and Bartlett R J 1986 Fifth-order many-body perturbation theory and its relationship to various coupled-cluster approaches Adv. Quantum Chem. 18 281CrossRefGoogle Scholar
  35. 35.
    Nooijen M and Snijders J G 1995 Second order manybody perturbation approximations to the coupled cluster Greens function J. Chem. Phys. 102 1681CrossRefGoogle Scholar
  36. 36.
    Stanton J F and Gauss J 1995 Perturbative treatment of the similarity transformed Hamiltonian in equationofmotion coupledcluster approximations J. Chem. Phys. 103 1064CrossRefGoogle Scholar
  37. 37.
    Ghosh D 2014 Perturbative approximation to hybrid equation of motion coupled cluster/effective fragment potential method J. Chem. Phys. 140 094101CrossRefGoogle Scholar
  38. 38.
    Gwaltney S R, Nooijen M and Bartlett R J 1996 Simplified methods for equation-of-motion coupled-cluster excited state calculations Chem. Phys. Lett. 248 189CrossRefGoogle Scholar
  39. 39.
    Christiansen O, Koch H and Jørgensen P 1995 The second-order approximate coupled cluster singles and doubles model CC2 Chem. Phys. Lett. 243 409CrossRefGoogle Scholar
  40. 40.
    Schreiber M, Silva-Junior M R, Sauer S P A and Thiel W 2008 Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3 J. Chem. Phys. 128 134110CrossRefGoogle Scholar
  41. 41.
    Jacquemin D, Duchemin I and Blase X 2016 Benchmarking the Bethe–Salpeter formalism on a standard organic molecular set J. Chem. Theory Comput. 12 5477CrossRefGoogle Scholar
  42. 42.
    Dutta A K, Vaval N and Pal S Assessment of Low Scaling Approximations to EOM-CCSD Method for Ionization Potential Communicated: http://arxiv.org/abs/1708.01293
  43. 43.
    Byrd J N, Rishi V, Perera A and Bartlett R J 2015 Approximating electronically excited states with equation-of-motion linear coupled-cluster theory J. Chem. Phys. 143 164103CrossRefGoogle Scholar
  44. 44.
    Weigend F, Häser M, Patzelt H and Ahlrichs R 1998 RI-MP2: optimized auxiliary basis sets and demonstration of efficiency. Chem. Phys. Lett. 294 143CrossRefGoogle Scholar
  45. 45.
    Whitten J L 1973 Coulombic potential energy integrals and approximations J. Chem. Phys. 58 4496CrossRefGoogle Scholar
  46. 46.
    Feyereisen M, Fitzgerald G and Komornicki A 1993 Use of approximate integrals in ab initio theory. An application in MP2 energy calculations Chem. Phys. Lett. 208 359CrossRefGoogle Scholar
  47. 47.
    Vahtras O, Almlöf J, Feyereisen M W 1993 Integral approximations for LCAO-SCF calculations Chem. Phys. Lett. 213 514CrossRefGoogle Scholar
  48. 48.
    Neese F 2003 An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix J. Comput. Chem. 24 1740CrossRefGoogle Scholar
  49. 49.
    Jung Y, Sodt A, Gill P M W and Head-Gordon M 2005 Auxiliary basis expansions for large-scale electronic structure calculations Proc. Natl. Acad. Sci. USA 102 6692CrossRefGoogle Scholar
  50. 50.
    Distasio R A, Steele R P, Rhee Y M, Shao Y and Head-Gordon M 2007 An improved algorithm for analytical gradient evaluation in resolution-of-the-identity second-order Møller–Plesset perturbation theory: application to alanine tetrapeptide conformational analysis J. Comput. Chem. 28 839CrossRefGoogle Scholar
  51. 51.
    Beebe N H F and Linderberg J 1977 Simplifications in the generation and transformation of two-electron integrals in molecular calculations Int. J. Quantum Chem. 12 683CrossRefGoogle Scholar
  52. 52.
    Koch H, de Merás A and Pedersen T B 2003 Reduced scaling in electronic structure calculations using Cholesky decompositions J. Chem. Phys. 118 9481CrossRefGoogle Scholar
  53. 53.
    Aquilante F, Lindh R and Pedersen T B 2007 Unbiased auxiliary basis sets for accurate two-electron integral approximations J. Chem. Phys. 127 114107CrossRefGoogle Scholar
  54. 54.
    Pedersen T B, Aquilante F and Lindh R 2009 Density fitting with auxiliary basis sets from Cholesky decompositions Theor. Chem. Acc. 124 1CrossRefGoogle Scholar
  55. 55.
    Aquilante F, Gagliardi L, Pedersen T B and Lindh R 2009 Atomic Cholesky decompositions: a route to unbiased auxiliary basis sets for density fitting approximation with tunable accuracy and efficiency J. Chem. Phys. 130 154107CrossRefGoogle Scholar
  56. 56.
    Weigend F, Kattannek M and Ahlrichs R 2009 Approximated electron repulsion integrals: Cholesky decomposition versus resolution of the identity methods J. Chem. Phys. 130 164106CrossRefGoogle Scholar
  57. 57.
    Aquilante F, Boman L, Boström J, Koch H, Lindh R, de Merás A S and Pedersen T B 2011 Cholesky decomposition techniques in electronic structure theory. In Zalesny R, Papadopoulos M G, Mezey P G and Leszczynski J (Eds.) Linear-Scaling Techniques in Computational Chemistry and Physics SE-13, Volume 13 of Challenges and Advances in Computational Chemistry and Physics (Berlin: Springer) pp. 301–343Google Scholar
  58. 58.
    Bozkaya U 2014 Analytic energy gradients and spin multiplicities for orbital-optimized second-order perturbation theory with density-fitting approximation: an efficient implementation J. Chem. Theory Comput. 10 4389CrossRefGoogle Scholar
  59. 59.
    Rendell A P and Lee T J 1994 Coupledcluster theory employing approximate integrals: an approach to avoid the input/output and storage bottlenecks J. Chem. Phys. 101 400CrossRefGoogle Scholar
  60. 60.
    Boström J, Pitoák M, Aquilante F, Neogrády P, Pedersen T B and Lindh R 2012 Coupled cluster and Møller–Plesset perturbation theory calculations of noncovalent intermolecular interactions using density fitting with auxiliary basis sets from Cholesky decompositions J. Chem. Theory Comput. 8 1921CrossRefGoogle Scholar
  61. 61.
    Pitoák M, Aquilante F, Hobza P, Neogrády P, Noga J and Urban M 2011 Parallelized implementation of the CCSD (T) method in MOLCAS using optimized virtual orbitals space and Cholesky decomposed two-electron integrals Collect. Czechoslov. Chem. Commun. 76 713CrossRefGoogle Scholar
  62. 62.
    DePrince A E and Sherrill C D 2013 Accuracy and efficiency of coupled-cluster theory using density fitting/Cholesky decomposition, frozen natural orbitals, and a t1-transformed Hamiltonian J. Chem. Theory Comput. 9 2687CrossRefGoogle Scholar
  63. 63.
    Gyrffy W, Shiozaki T, Knizia G and Werner H J 2013 Analytical energy gradients for second-order multireference perturbation theory using density fitting J. Chem. Phys. 138 104104CrossRefGoogle Scholar
  64. 64.
    Hättig C 2003 Geometry optimizations with the coupled-cluster model CC2 using the resolution-of-the-identity approximation J. Chem. Phys. 118 7751CrossRefGoogle Scholar
  65. 65.
    Köhn A and Hättig C 2003 Analytic gradients for excited states in the coupled-cluster model CC2 employing the resolution-of-the-identity approximation J. Chem. Phys. 119 5021CrossRefGoogle Scholar
  66. 66.
    Schütz M, Werner H J, Lindh R and Manby F R 2004 Analytical energy gradients for local second-order Møller–Plesset perturbation theory using density fitting approximations J. Chem. Phys. 121 737CrossRefGoogle Scholar
  67. 67.
    Ledermller K and Schtz M 2014 Local cc2 response method based on the laplace transform: analytic energy gradients for ground and excited states J. Chem. Phys. 140 164113CrossRefGoogle Scholar
  68. 68.
    Bozkaya U 2014 Derivation of general analytic gradient expressions for density-fitted post-Hartree–Fock methods: an efficient implementation for the density-fitted second-order Møller–Plesset perturbation theory J. Chem. Phys. 141 124108CrossRefGoogle Scholar
  69. 69.
    Bozkaya U 2014 Orbital-optimized second-order perturbation theory with density-fitting and cholesky decomposition approximations: An efficient implementation J. Chem. Theory Comput. 10 2371CrossRefGoogle Scholar
  70. 70.
    Epifanovsky E, Zuev D, Feng X, Khistyaev K, Shao Y and Krylov A I 2013 General implementation of the resolution-of-the-identity and Cholesky representations of electron repulsion integrals within coupled-cluster and equation-of-motion methods: Theory and benchmarks J. Chem. Phys. 139 134105CrossRefGoogle Scholar
  71. 71.
    Dutta A K, Neese F and Izsk R 2016 Speeding up equation of motion coupled cluster theory with the chain of spheres approximation J. Chem. Phys. 144 034102CrossRefGoogle Scholar
  72. 72.
    Hättig C and Weigend F 2000 CC2 excitation energy calculations on large molecules using the resolution of the identity approximation J. Chem. Phys. 113 5154CrossRefGoogle Scholar
  73. 73.
    Hirao K and Nakatsuji H 1982 A generalization of the Davidson’s method to large nonsymmetric eigenvalue problems J. Comput. Phys. 45 246CrossRefGoogle Scholar
  74. 74.
    Löwdin P O 1963 Studies in perturbation theory J. Mol. Spectrosc. 10 12CrossRefGoogle Scholar
  75. 75.
    Aidas K, Angeli C, Bak K L, Bakken V, Bast R, Boman L, Christiansen O, Cimiraglia R, Coriani S, Dahle P, Dalskov E K, Ekström U, Enevoldsen T, Eriksen J J, Ettenhuber P, Fernández B, Ferrighi L, Fliegl H, Frediani L, Hald K, Halkier A, Hättig C, Heiberg H, Helgaker T, Hennum A C, Hettema H, Hjertenæ s E, Hø st S, Hø yvik I M, Iozzi M F, Jansík B, Jensen H J A, Jonsson D, Jø rgensen P, Kauczor J, Kirpekar S, Kjæ rgaard T, Klopper W, Knecht S, Kobayashi R, Koch H, Kongsted J, Krapp A, Kristensen K, Ligabue A, Lutnæ s O B, Melo J I, Mikkelsen K V, Myhre R H, Neiss C, Nielsen C B, Norman P, Olsen J, Olsen J M H, Osted A, Packer M J, Pawlowski F, Pedersen T B, Provasi P F, Reine S, Rinkevicius Z, Ruden T A, Ruud K, Rybkin V V, Saek P, Samson C C M, de Merás A S , Saue T, Sauer S P A, Schimmelpfennig B, Sneskov K, Steindal A H, Sylvester-Hvid K O, Taylor P R, Teale A M, Tellgren E I, Tew D P, Thorvaldsen A J, Thø gersen L, Vahtras O, Watson M A, Wilson D J D, Ziolkowski M and Å gren H 2014 The Dalton quantum chemistry program system Wiley Interdiscip. Rev. Comput. Mol. Sci. 4 269Google Scholar
  76. 76.
    Furche F, Ahlrichs R, Hättig C, Klopper W, Sierka M and Weigend F 2014 Turbomole Wiley Interdiscip. Rev. Comput. Mol. Sci. 4 91CrossRefGoogle Scholar
  77. 77.
    Neese F 2012 The ORCA program system Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 73CrossRefGoogle Scholar
  78. 78.
    Shao Y, Gan Z, Epifanovsky E, Gilbert A T B, Wormit M, Kussmann J, Lange A W, Behn A, Deng J, Feng X, Ghosh D, Goldey M, Horn P R, Jacobson L D, Kaliman I, Khaliullin R Z, Kuś T, Landau A, Liu J, Proynov E I, Rhee Y M, Richard R M, Rohrdanz M A, Steele R P, Sundstrom E J, Woodcock III H L, Zimmerman P M, Zuev D, Albrecht B, Alguire E, Austin B, Beran G J O, Bernard Y A, Berquist E, Brandhorst K, Bravaya K B, Brown S T, Casanova D, Chang C M, Chen Y, Chien S H, Closser K D, Crittenden D L, Diedenhofen M, DiStasio Jr RA, Do H, Dutoi A D, Edgar R G, Fatehi S, Fusti-Molnar L, Ghysels A, Golubeva-Zadorozhnaya A, Gomes J, Hanson-Heine M W D, Harbach P H P, Hauser A W, Hohenstein E G, Holden Z C, Jagau T C, Ji H, Kaduk B, Khistyaev K, Kim J, Kim J, King R A, Klunzinger P, Kosenkov D, Kowalczyk T, Krauter C M, Lao K U, Laurent A D, Lawler K V, Levchenko S V, Lin C Y, Liu F, Livshits E, Lochan R C, Luenser A, Manohar P, Manzer S F, Mao S P, Mardirossian N, Marenich A V, MaurerS A, Mayhall N J, Neuscamman E, Oana C M, Olivares-Amaya R, ONeillD P, Parkhill J A, Perrine T M, Peverati R, Prociuk A, Rehn D R, Rosta E, Russ N J, Sharada S M, Sharma S, Small D W, Sodt A, SteinT, Stück D, Su Y C, Thom A J W, Tsuchimochi T, Vanovschi V, VogtL, Vydrov O, Wang T, Watson M A, Wenzel J, White A, Williams C F, Yang J, Yeganeh S, Yost S R, You Z Q, Zhang I Y, Zhang X, Zhao Y, Brooks B R, Chan G K L, Chipman D M, Cramer C J, Goddard III W A, Gordon M S, Hehre W J, Klamt A, Schaefer III H F, Schmidt M W, Sherrill C D, Truhlar D G, Warshel A, Xu X, Aspuru-Guzik A, Baer R, Bell A T, Besley N A, Chai J D, Dreuw A, Dunietz B D, Furlani T R, Gwaltney S R, Hsu C P, Jung Y, Kong J, Lambrecht D S, Liang W, Ochsenfeld C, Rassolov V A, Slipchenko L V, Subotnik J E, VanVoorhis T, Herbert J M, Krylov A I, Gill P M W and Head-Gordon M 2015 Advances in molecular quantum chemistry contained in the Q-Chem4 program package Mol. Phys. 113 184Google Scholar
  79. 79.
    Dutta A K, Sengupta T, Vaval N and Pal S 2015 Electron attachment to DNA and RNA nucleobases: an EOMCC investigation Int. J. Quantum Chem. 115 753CrossRefGoogle Scholar
  80. 80.
    Huels M A, Hahndorf I, Illenberger E and Sanche L 1998 Resonant dissociation of DNA bases by subionization electrons J. Chem. Phys. 108 1309CrossRefGoogle Scholar
  81. 81.
    Wheldon T E 2000 Radiation physics and genetic targeting: new directions for radiotherapy Phys. Med. Biol. 45 R77CrossRefGoogle Scholar
  82. 82.
    Schuster G B 2000 Long-range charge transfer in DNA: transient structural distortions control the distance dependence Acc. Chem. Res. 33 253CrossRefGoogle Scholar
  83. 83.
    Holmlin R E, Dandliker P J and Barton J K 1997 Charge transfer through the DNA base stack Angew. Chem. Int. Ed. Engl. 36 2714CrossRefGoogle Scholar
  84. 84.
    Crespo-Hernández* C E, Close D M, Gorb L and Leszczynski J Determination of redox potentials for the Watson–Crick base pairs, DNA nucleosides, and relevant nucleoside analogues 2007 J. Phys. Chem. B 111 5386Google Scholar
  85. 85.
    Gu J, Xie Y and Schaefer H F 2006 Understanding electron attachment to the DNA double helix: the Thymidine Monophosphate–Adenine pair in the gas phase and aqueous solution J. Phys. Chem. B 110 19696Google Scholar
  86. 86.
    Li X, Cai Z and Sevilla M D 2002 DFT Calculations of the electron affinities of nucleic acid bases: dealing with negative electron affinities J. Phys. Chem. A 106 1596Google Scholar
  87. 87.
    Vera D M A and Pierini A B 2004 Species with negative electron affinity and standard DFT methods Phys. Chem. Chem. Phys. 6 2899CrossRefGoogle Scholar
  88. 88.
    Roca-Sanjuán D, Merchán M, Serrano-Andrés L and Rubio M 2008 Ab initio determination of the electron affinities of DNA and RNA nucleobases J. Chem. Phys. 129 095104CrossRefGoogle Scholar
  89. 89.
    Dedíková P, Demovič L, Pitoák M, Neogrády P and Urban M 2009 CCSD(T) calculations of the electron affinity of the uracil molecule Chem. Phys. Lett. 481 107CrossRefGoogle Scholar
  90. 90.
    Bravaya K B, Kostko O, Dolgikh S, Landau A, Ahmed M and Krylov A I 2010 Electronic structure and spectroscopy of nucleic acid bases: ionization energies, ionization-induced structural changes, and photoelectron spectra J. Phys. Chem. A 114 12305CrossRefGoogle Scholar
  91. 91.
    Bravaya K B, Epifanovsky E and Krylov A I 2012 Four bases score a run: ab initio calculations quantify a cooperative effect of H-bonding and \(\pi \)-stacking on the ionization energy of adenine in the AATT tetramer J. Phys. Chem. Lett. 3 2726CrossRefGoogle Scholar
  92. 92.
    Golubeva A A and Krylov A I 2009 The effect of [small pi]-stacking and H-bonding on ionization energies of a nucleobase: uracil dimer cation Phys. Chem. Chem. Phys. 11 1303CrossRefGoogle Scholar
  93. 93.
    Bravaya K B, Kostko O, Ahmed M and Krylov A I 2010 The effect of [small pi]-stacking, H-bonding, and electrostatic interactions on the ionization energies of nucleic acid bases: adenine-adenine, thymine-thymine and adenine-thymine dimers Phys. Chem. Chem. Phys. 12 2292CrossRefGoogle Scholar
  94. 94.
    Aflatooni K, Gallup G A, and Burrow* P D 1998 Electron attachment energies of the DNA bases J. Phys. Chem. A 102 6205Google Scholar
  95. 95.
    Periquet V, Moreau A, Carles S, Schermann J P and Desfrançois C 2000 Cluster size effects upon anion solvation of N-heterocyclic molecules and nucleic acid bases J. Electron Spectrosc. Relat. Phenom. 106 141CrossRefGoogle Scholar
  96. 96.
    Harinipriya S and Sangaranarayanan M V 2003 Estimation of the electron affinities of nucleobases using thermochemical data and structural considerations J. Mol. Struct. 644 133CrossRefGoogle Scholar
  97. 97.
    Gu J, Leszczynski J and Schaefer I I I H F 2012 Interactions of electrons with bare and hydrated biomolecules: from nucleic acid bases to DNA segments Chem. Rev. 112 5603CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  1. 1.Department of ChemistryBirla Institute of Technology and SciencePilaniIndia
  2. 2.Physical Chemistry DivisionCSIR-National Chemical LaboratoryPuneIndia

Personalised recommendations