Journal of Chemical Sciences

, Volume 129, Issue 10, pp 1639–1645 | Cite as

Two hybrids based on Keggin polyoxometalates and dinuclear copper(II) complexes: syntheses, structures and electrocatalytic properties

Regular Article


By introducing mixed-ligands en and ox, \(\hbox {Cu}^{2+}\) and different polyoxotungstates as synthons, two new polyoxotungstate-based inorganic-organic hybrid compounds \(\{[\hbox {Cu}_{2}\hbox {(en)}_{2}\hbox {(ox)}]\hbox {[HPW}_{12}\hbox {O}_{40}]\}\cdot \hbox {(en)}_{2}\cdot \hbox {2H}_{2}\hbox {O}\) (1) and \(\{[\hbox {Cu}_{2}\hbox {(en)}_{2}\hbox {(ox)}]\) [\(\hbox {H}_{3}\hbox {BW}_{12}\hbox {O}_{40}]\}\cdot \hbox {(en)}_{2}\cdot \hbox {2H}_{2}\hbox {O}\) (2) (en = ethylenediamine and ox = oxalate), were obtained in identical hydrothermal conditions and further characterized by elemental analyses, IR spectroscopy and single-crystal X-ray diffraction. Structural analyses revealed that both compounds are isostructural, and show one-dimensional (1D) chain constructed by \(\hbox {[XW}_{12}\hbox {O}_{40}]^{\mathrm{n}-}\) (X = P 1, B 2) Keggin-type polyoxoanions and \([\hbox {Cu}_{2}\hbox {(en)}_{2}\hbox {(ox)}]^{2+}\) dinuclear copper subunits. The electrochemical experiments indicated that 1-based carbon paste electrode possesses high catalytic efficiency and selectivity towards reduction of \(\hbox {H}_{2}\hbox {O}_{2}\), and thus 1 has potential to detect \(\hbox {H}_{2}\hbox {O}_{2}\).

Graphical Abstract

SYNOPSIS Two new hybrids based on polyoxoanions and dinuclear copper complexes have been synthesized and characterized. The results of electrocatalytic experiments indicate that the hybrid-based electrode possesses high catalytic efficiency and selectivity towards reduction of \(\hbox {H}_{2}\hbox {O}_{2}\).


Polyoxometalate Keggin dinuclear copper electrocatalysis 



This work was financially supported by the NSF of China (51572063, 21371041, 21501053, 21671049), the science and technology innovation foundation of Harbin (2014RFXXJ076).

Supplementary material

12039_2017_1376_MOESM1_ESM.doc (2.5 mb)
Supplementary material 1 (doc 2611 KB)
12039_2017_1376_MOESM2_ESM.doc (54 kb)
Supplementary material 2 (doc 54 KB)
12039_2017_1376_MOESM3_ESM.doc (54 kb)
Supplementary material 3 (doc 53 KB)
12039_2017_1376_MOESM4_ESM.pdf (182 kb)
Supplementary material 4 (pdf 181 KB)
12039_2017_1376_MOESM5_ESM.pdf (256 kb)
Supplementary material 5 (pdf 256 KB)


  1. 1.
    Pope M T and Müller A 1991 Polyoxometalate Chemistry: An old field with new dimensions in several disciplines Angew. Chem. Int. Ed. Engl. 30 34CrossRefGoogle Scholar
  2. 2.
    McCleverty J A and Meye T J 2004 In Comprehensive Coordination Chemistry II Vol. 1–9 (Oxford: Elsevier) p. 7861Google Scholar
  3. 3.
    Li S B, Li Z H, Zhang J Y, Su Z N, Qi S Y, Guo S H and Tan X G 2017 Polyoxometalate-based 3D porous framework with inorganic molecular nanocage units J. Chem. Sci. 129 573CrossRefGoogle Scholar
  4. 4.
    Arumuganathan T, Siddikha A and Das S K 2017 ‘Ionic crystals’ consisting of trinuclear macrocations and polyoxometalate anions exhibiting single crystal to single crystal transformation: breathing of crystals J. Chem. Sci. 129 1121CrossRefGoogle Scholar
  5. 5.
    Hmida F, Ayed M, Ayed B and Haddad A 2015 Two new inorganic-organic hybrid materials based on inorganic cluster, \([\text{ X }_{2}\text{ Mo }_{18}\text{ O }_{62}]^{6-}\) (X = P, As) J. Chem. Sci. 127 1645CrossRefGoogle Scholar
  6. 6.
    Sadakane M and Steckhan E 1998 Electrochemical properties of polyoxometalates as electrocatalysts Chem. Rev. 98 219CrossRefGoogle Scholar
  7. 7.
    Zhao J W, Shi D Y, Chen L J, Ma P T, Wang J P, Zhang J and Niu J Y 2013 Tetrahedral polyoxometalate nanoclusters with tetrameric rare-earth cores and germanotungstate vertexes Cryst. Growth Des. 13 4368CrossRefGoogle Scholar
  8. 8.
    Guo S X, Liu Y P, Lee C Y, Bond A M, Zhang J, Geletii Y V and Hill C L 2013 Graphene-supported \([\{\text{ Ru }_{4}\text{ O }_{4}(\text{ OH })_{2}\text{(H }_{2}\text{ O })_{4}\}(\upgamma -\text{ SiW }_{10}\text{ O }_{36})_{2}]^{10-}\) for highly efficient electrocatalytic water oxidation Energy Environ. Sci. 6 2654CrossRefGoogle Scholar
  9. 9.
    Thomas J, Kannan K R and Ramanan A 2008 Nanostructured phosphomolybdates J. Chem. Sci. 120 529CrossRefGoogle Scholar
  10. 10.
    Lu X X, Luo Y H, Liu Y S, Ma W W, Xu Y and Zhang H 2016 Assembly of three stable POM-based pillar-layer \(\text{ Cu }^{{\rm I}}\) coordination polymers with visible light driven photocatalytic properties CrystEngComm 18 3650CrossRefGoogle Scholar
  11. 11.
    Li Y W, Guo L Y, Su H F, Jagodič M, Luo M, Zhou X Q, Zeng S Y, Tung C H, Sun D and Zheng L S 2017 Two unprecedented POM-based inorganic–organic hybrids with concomitant heteropolytungstate and molybdate Inorg. Chem. 56 2481CrossRefGoogle Scholar
  12. 12.
    Misono M 2001 Unique acid catalysis of heteropoly compounds (heteropolyoxometalates) in the solid state Chem. Commun. 1141Google Scholar
  13. 13.
    Hill C L 2004 Stable, self-assembling, equilibrating catalysts for green chemistry Angew. Chem. Int. Ed. 43 402CrossRefGoogle Scholar
  14. 14.
    Zhou J, Chen W C, Sun C Y, Han L, Qin C, Chen M M, Wang X L, Wang E B and Su Z M 2017 Oxidative polyoxometalates modified graphitic carbon nitride for visible-light \(\text{ CO }_{2}\) reduction ACS Appl. Mater. Interfaces 9 11689CrossRefGoogle Scholar
  15. 15.
    Rhule J T, Hill C L and Judd D A 1998 Polyoxometalates in medicine Chem. Rev. 98 327CrossRefGoogle Scholar
  16. 16.
    Shigeta S, Mori S, Kodama E, Kodama J, Takahashi K and Yamase T 2003 Broad spectrum anti-RNA virus activities of titanium and vanadium substituted polyoxotungstates Antivir. Res. 58 265CrossRefGoogle Scholar
  17. 17.
    Yamase T 2005 Anti-tumor, -viral, and -bacterial activities of polyoxometalates for realizing an inorganic drug J. Mater. Chem. 15 4773CrossRefGoogle Scholar
  18. 18.
    Peng Q P, Li S J, Wang R Y, Liu S X, Xie L H, Zhai J X, Zhang J, Zhao Q Y and Chen X N 2017 Lanthanide derivatives of Ta/W mixed-addendum POMs as proton-conducting materials Dalton Trans. 46 4157CrossRefGoogle Scholar
  19. 19.
    Coronado E and Gómez-garcía C J 1995 Polycxometalates: from magnetic clusters to molecular materials Comments Inorg. Chem. 17 255CrossRefGoogle Scholar
  20. 20.
    Mialane P, Dolbecq A, Marrot J, Rivière E and Sécheresse F 2005 A nonanuclear copper(II) polyoxometalate assembled around a \(\mu \)-1,1,1,3,3,3-azido ligand and its parent tetranuclear complex Chem. Eur. J. 11 1771CrossRefGoogle Scholar
  21. 21.
    Mal S S and Kortz U 2005 The wheel-shaped \(\text{ Cu }_{20}\) tungstophosphate \([\text{ Cu }_{20}\text{ Cl(OH) }_{24}\text{(H }_{2}\text{ O) }_{12}\text{(P }_{8}\text{ W }_{48}\text{ O }_{184})]^{25-}\) ion Angew. Chem. Int. Ed. 44 3777CrossRefGoogle Scholar
  22. 22.
    Proust A, Thouvenot R and Gouzerh P 2008 Functionalization of polyoxometalates: towards advanced applications in catalysis and materials science Chem. Commun. 1837Google Scholar
  23. 23.
    Hagrman P J, Hagrman D and Zubieta J 1999 Organic–inorganic hybrid materials: from “simple” coordination polymers to organodiamine-templated molybdenum oxides Angew. Chem. Int. Ed. 38 2638CrossRefGoogle Scholar
  24. 24.
    Du D Y, Qin J S, Li S L, Su Z M and Lan Y Q 2014 Recent advances in porous polyoxometalate-based metal–organic framework materials Chem. Soc. Rev. 43 4615CrossRefGoogle Scholar
  25. 25.
    Li F R, Lv J H, Yu K, Zhang H, Wang C M, Wang C X and Zhou B B 2017 Two extended Wells–Dawson arsenomolybdate architectures directed by Na(I) and/or Cu(I) organic complex linkers CrystEngComm 19 2320CrossRefGoogle Scholar
  26. 26.
    Kikukawa Y, Kuroda Y, Yamaguchi K and Mizuno N 2012 Diamond-shaped \([\text{ Ag }_{4}]^{4+}\) cluster encapsulated by silicotungstate ligands: synthesis and catalysis of hydrolytic oxidation of silanes Angew. Chem. Int. Ed. 51 2434CrossRefGoogle Scholar
  27. 27.
    Wang X L, Qin C, Wang E B, Li Y G, Su Z M, Xu L and Carlucci L 2005 Entangled coordination networks with inherent features of polycatenation, polythreading, and polyknotting Angew. Chem. Int. Ed. 44 5824CrossRefGoogle Scholar
  28. 28.
    Niu J Y, Zhang X Q, Yang D H, Zhao J W, Ma P T, Kortz U and Wang J P 2012 Organodiphosphonate-functionalized lanthanopolyoxomolybdate cages Chem. Eur. J. 18 6759 Google Scholar
  29. 29.
    Ji H Y, Li X M, Xu D H, Zhou Y S, Zhang L J, Zuhra Z and Yang S W 2017 Synthesis, structure, and photoluminescence of color-tunable and white-light-emitting lanthanide metal–organic open frameworks composed of \(\text{ AlMo }_{6}\text{(OH }_{)6}\text{ O }_{18}^{3-}\) polyanion and nicotinate Inorg. Chem. 56 156CrossRefGoogle Scholar
  30. 30.
    Zapf P J, Warren C J, Haushalter R C and Zubieta J 1997 One- and two-dimensional organic–inorganic composite solidsconstructed from molybdenum oxide clusters and chains linked through M\({\{}(2,2^\prime -\text{ bpy })^{{\}}2+}\) fragments (M = Co, Ni, Cu) Chem. Commun. 1543Google Scholar
  31. 31.
    Férey G 2001 Microporous solids: From organically templated inorganic skeletons to hybrid frameworks...ecumenism in chemistry Chem. Mater. 13 3084CrossRefGoogle Scholar
  32. 32.
    Sun C Y, Liu S X, Liang D D, Shao K Z, Ren Y H and Su Z M 2009 Highly stable crystalline catalysts based on a microporous metal-organic framework and polyoxometalates J. Am. Chem. Soc. 131 1883CrossRefGoogle Scholar
  33. 33.
    Reinoso S, Vitoria P, Lezama L, Luque A and Gutiérrez-Zorrilla J M 2003 A novel organic-inorganic hybrid based on a dinuclear copper complex supported on a Keggin polyoxometalate Inorg. Chem. 42 3709CrossRefGoogle Scholar
  34. 34.
    Reinoso S, Vitoria P, Gutiérrez-Zorrilla J M, Lezama L, Felices L S and Beitia J I 2005 Inorganic-metalorganic hybrids based on copper(II)-monosubstituted Keggin polyanions and dinuclear copper(II)-oxalate complexes. Synthesis, X-ray structural characterization, and magnetic properties Inorg. Chem. 44 9731CrossRefGoogle Scholar
  35. 35.
    Cao R G, Liu S X, Xie L H, Pan Y B, Cao J F, Ren Y H and Xu L 2007 Organic–inorganic hybrids constructed of Anderson-type polyoxoanions and oxalato-bridged dinuclear copper complexes Inorg. Chem. 46 3541CrossRefGoogle Scholar
  36. 36.
    Reinoso S, Vitoria P, Felices L S, Montero A, Lezama L and Gutiérrez-Zorrilla J M 2007 Tetrahydroxy-\(p\)-benzoquinone as a source of polydentate O-Donor ligands. synthesis, crystal structure, and magnetic properties of the [Cu(bpy)(dhmal)]\(_{2}\) dimer and the two-dimensional [\(\text{ SiW }_{12}\text{ O }_{40}\text{ Cu }_{2}\text{(bpy) }_{2}-\text{(H }_{2}\text{ O)(ox) }\}_{2}]\cdot \text{16H }_{2}\text{ O }\) inorganic-metalorganic hybrid Inorg. Chem. 46 1237CrossRefGoogle Scholar
  37. 37.
    Han Q X, Ma P T, Zhao J W, Wang J P and Niu J Y 2011 A novel 1D tungstoarsenate with mixed organic ligands assembled by hexa-Cu sandwiched Keggin units and dinuclear copper-oxalate complexes Inorg. Chem. Commun. 14 767CrossRefGoogle Scholar
  38. 38.
    Zhao H Y, Zhao J W, Yang B F, He H and Yang G Y 2013 Novel organic–inorganic hybrid one-dimensional chain assembled by oxalate-bridging terbium-substituted phosphotungstate dimers and dinuclear copper(II)–oxalate clusters CrystEngComm 15 5209CrossRefGoogle Scholar
  39. 39.
    Deitcheff C R, Fournier M, Franck R and Thouvenot R 1983 Vibrational investigations of polyoxometalates. 2. Evidence for anion–anion interactions in molybdenum(V1) and tungsten(V1) compounds related to the Keggin structure Inorg. Chem. 22 207CrossRefGoogle Scholar
  40. 40.
    Sheldrick GM 2010 SHELXTL (version 6.1) (Madison: Bruker Analytical, X-ray Instruments Inc.)Google Scholar
  41. 41.
    Keggin J F 1993 Structure of the crystals of 12-Phosphotungstic acid Nature 132 351CrossRefGoogle Scholar
  42. 42.
    Hagrman D, Hagrman P J and Zubieta J 1999 Solid-state coordination chemistry: the self-assembly of microporous organic–inorganic hybrid frameworks constructed from tetrapyridylporphyrin and bimetallic oxide chains or oxide clusters Angew. Chem. Int. Ed. 38 3165CrossRefGoogle Scholar
  43. 43.
    Avarvari N and Fourmigué M 2004 1,4-Dihydro-1,4-diphosphinine fused with two tetrathiafulvalenes Chem. Commun. 2794Google Scholar
  44. 44.
    Brown I D and Altermatt D 1985 Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database Acta Crystallogr. B 41 244Google Scholar
  45. 45.
    Wang X L, Li N, Tian A X, Ying J, Liu G C, Lin H Y, Zhang J W and Yang Y 2013 Two polyoxometalate-directed 3D metal–organic frameworks with multinuclear silver–ptz cycle/belts as subunits Dalton Trans. 42 14856CrossRefGoogle Scholar
  46. 46.
    Tuero L S, Garcia-lozano J, Monto E E, Borja M B, Dahan F, Tuchagues J P and Legros J P 1991 Crystal and molecular structure and magnetic properties of a new \(\mu \)-oxalato binuclear copper(II) complex containing mepirizole J. Chem. Soc. Dalton Trans. 2619Google Scholar
  47. 47.
    Thomas A M, Mandal G C, Tiwary S K, Rath R K and Chakravarty A R 2000 Ascorbate oxidation leading to the formation of a catalytically active oxalato bridged dicopper(II) complex as a model for dopamine \(\beta \)-hydroxylase J. Chem. Soc. Dalton Trans. 1395Google Scholar
  48. 48.
    Xi X D, Wang G, Liu B F and Dong S J 1995 Electrochemical behavior of Bis(2: 17-arsenotungstate) lanthanates and their electrocatalytic reduction for Nitrite Electrochim. Acta 40 1025CrossRefGoogle Scholar
  49. 49.
    Fay N, Dempsey E and McCormac T 2005 Assembly, electrochemical characterisation and electrocatalytic ability of multilayer films based on \(\text{[Fe(bpy) }_{3}]^{2+}\), and the Dawson heteropolyanion, \(\text{[P }_{2}\text{ W }_{18}\text{ O }_{62}]^{6-}\) J. Electroanal. Chem. 574 359CrossRefGoogle Scholar
  50. 50.
    Zhang C D, Liu S X, Sun C Y, Ma F J and Su Z M 2009 Assembly of organic-inorganic hybrid materials based on Dawson-type polyoxometalate and multinuclear copper-phen complexes with unique magnetic properties Cryst. Growth Des. 9 3655CrossRefGoogle Scholar
  51. 51.
    Wang X L, Gao Q, Tian A X, Hu H L and Liu G C 2012 Effect of the Keggin anions on assembly of \(\text{ Cu }^{I}\)-bis(tetrazole) thioether complexes containing multinuclear \(\text{ Cu }^{I}\)-cluster J. Solid State Chem. 187 219CrossRefGoogle Scholar
  52. 52.
    Keita B, Oliveira P D, Nadjo L and Kortz U 2007 The ball-shaped heteropolytungstates \([\{\text{ Sn(CH }_{3})_{2}(\text{ H }_{2}\text{ O })\}_{24}\{\text{ Sn(CH }_{3}{\bf )}_{2}\}_{12}(\text{ A-XW }_{9}\text{ O }_{34})_{12}]^{36-}\) (X = P, As): stability, redox and electrocatalytic properties in aqueous media Chem. Eur. J. 13 5480CrossRefGoogle Scholar
  53. 53.
    Pichon C, Mialane P, Dolbecq A, Marrot J, RiviŁre E, Keita B, Nadjo L and Secheresse F 2007 Characterization and electrochemical properties of molecular icosanuclear and bidimensional hexanuclear Cu(II) azido polyoxometalates Inorg. Chem. 46 5292CrossRefGoogle Scholar
  54. 54.
    Keita B, Belhouari A, Nadjo L and Contant R 1995 Electrocatalysis by polyoxometalate/vbpolymer systems: reduction of nitrite and nitric oxide J. Electroanal. Chem. 381 243CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  1. 1.Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental EngineeringHarbin University of Science and TechnologyHarbinPeople’s Republic of China
  2. 2.College of Pharmaceutical SciencesHeilongjiang University of Chinese MedicineHarbinPeople’s Republic of China

Personalised recommendations