Journal of Chemical Sciences

, Volume 129, Issue 10, pp 1595–1601 | Cite as

Reaction of three cyclic thioester ligands with triiron dodecacarbonyl and possible reaction mechanisms

  • Zhiyin Xiao
  • Yongli Wang
  • Xueyuan Chen
  • Jiao Long
  • Zhenhong Wei
Regular Article



Three cyclic thioesters of the formula “\(-\hbox {SCH}_{2}\hbox {CH}_{2}\hbox {SCO}(\hbox {CH}_{2})_{\mathrm{n}}-\)” (\(\mathbf{L}_{\mathbf{1}}, \hbox {n} = 0; \mathbf{L}_{\mathbf{2}}, = 1, \mathbf{L}_{\mathbf{3}}, \hbox {n} = 2\)) and their reactions with \(\hbox {Fe}_{3}(\hbox {CO})_{12}\) are reported. All the reactions produced a known diiron complex, [\(\hbox {Fe}_{2}(\upmu \hbox {-}\hbox {S}_{2}\hbox {C}_{2}\hbox {H}_{4})(\hbox {CO})_{6}\)] (1), which suggested that in the reactions, cleavage of C-S bond to generate “\(\hbox {SCH}_{2}\hbox {CH}_{2}\hbox {S}\)” fragment is a common pathway for all the three ligands. In the case of ligand \(\mathbf{L}_{\mathbf{2}}\), a new complex 2, [\(\hbox {Fe}_{2}\{\upmu \hbox {-}\hbox {SC}_{2}\hbox {H}_{4}(\hbox {SCH}_{2})\hbox {-}\upkappa \}(\hbox {CO})_{6}\)] was isolated and structurally characterized. In the reaction of ligand \(\mathbf{L}_{\mathbf{3}}\), an unknown iron carbonyl product was isolated in addition to complex 1. Although its precise structure was not established due to its instability and low yield, its infrared spectrum and decomposing into complex 1 implied that the product may be a cluster with higher nuclearity. The experimental observations suggested that with the increase of the ring size of the cyclic thioester ligands, further bond cleavages were involved in the reaction in addition to that leading to complex 1.


SYNOPSIS Reaction of cyclic thioester ligands with triiron dodecacarbonyl leads to scission of C-S (C) bond which is initiated by the coordination of the S atom to the Fe atom. The larger the ring size of the ligand, the more diverse are the bond cleavages.


Iron-sulfur carbonyl complexes cyclic thioesters C-S bond cleavage reaction mechanism 



We thank the Natural Science Foundation of Zhejiang Province (Grant No. LQ17B01004) and the Key Project for Student Research Training of Jiaxing University (851716048) for supporting this work.

Supplementary material

12039_2017_1372_MOESM1_ESM.docx (650 kb)
Supplementary material 1 (docx 649 KB)


  1. 1.
    Peters J W, Lanzilotta W N, Lemon B J and Seefeldt L C 1998 X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution Science 282 1853CrossRefGoogle Scholar
  2. 2.
    Nicolet Y, Piras C, Legrand P, Hatchikian C E and Fontecilla-Camps J C 1999 Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center Structure 7 13CrossRefGoogle Scholar
  3. 3.
    Vignais P M and Billoud B 2007 Occurrence, classification, and biological function of hydrogenases: An overview Chem. Rev. 107 4206Google Scholar
  4. 4.
    Mathur P, Ghosh S, Sarkar A, Satyanarayana C V V, Drake J E and Yang J 1997 Unusual Formation of Vinyl Ether Derivatives in the Reaction of Tributyltin Hydride with Fischer Carbene Complexes Anchored on a Chalcogen-Stabilized Iron Carbonyl Cluster Organometallics 16 6028CrossRefGoogle Scholar
  5. 5.
    Mathur P, Ghosh S, Sarkar A, Satyanarayana C V V and Puranik V G 1997 Chemical Modification of the Metal–Carbene Appendage in New, Trimetallic Adducts of Fe\(_{2}\)(CO)\(_{6}(\mu \)-\({\rm EE}^{\prime }) ({\rm E}={\rm S}, {\rm Se}\,\, {\rm and}\,\, {\rm E}^{\prime }={\rm Se}, {\rm Te})\) and Alkynyl Fischer Carbene Complexes (CO)\(_{5}\)MC(OEt)(C\(\equiv \)CPh)(M \(=\) Cr, W) Organometallics 16 4392Google Scholar
  6. 6.
    Mathur P, Ghosh S, Sarkar A, Satyanarayana C V V, Rheingold A L and Liable-Sands L M 1997 Regioselective Addition of Mixed-Chalcogenide Iron Carbonyl Clusters Fe\(_{2}\)(CO)\(_{6}(\mu \)-\({\rm EE}^{\prime })\) \(({\rm E} {\ne } {\rm E}^{\prime }, {\rm E}, {\rm E}^{\prime } ={\rm S},{\rm Se},{\rm Te})\) to a Carbon–Carbon Triple Bond Activated by a Metal Carbene Fragment. Structural Characterization of New Trimetallic Adducts Fe\(_{2}\)(CO)\(_{6}\) \(\{\mu \)-SC(Ph)C(Te)[(OEt)CCr(CO)\(_{5}\)]\(\}\), Fe\(_{2}\)(CO)\(_{6}\) \(\{\mu \)-SC(Ph)C(Se)[(OEt)CW(CO)\(_{5}\)]\(\}\), and Fe\(_{2}\)(CO)\(_{6}\) \(\{\mu \)-SeC(Ph)C(Te)[(OET)CW(CO)\(_{5}\)]\(\}\) Organometallics 16 3536Google Scholar
  7. 7.
    Adams R D, Kwon O S and Miao S 2005 Disulfido Metal Carbonyl Complexes Containing Manganese Acc. Chem. Res. 38 183CrossRefGoogle Scholar
  8. 8.
    Schilter D, Camara J M, Huynh M T, Hammes-Schiffer S and Rauchfuss T B 2016 Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides Chem. Rev. 116 8693Google Scholar
  9. 9.
    Li Y and Rauchfuss T B 2016 Synthesis of Diiron(I) Dithiolato Carbonyl Complexes Chem. Rev. 116 7043Google Scholar
  10. 10.
    Adams R D, Babin J E, Wang J G and Wu W G 1989 Cluster Synthesis .24. Synthesis and Characterization of New Sulfur-Containing Tungsten Iron Carbonyl Cluster Complexes Inorg. Chem. 28 703CrossRefGoogle Scholar
  11. 11.
    Song L C, Gao J, Wang H T, Hua Y J, Fan H T, Zhang X G and Hu Q M 2006 Synthesis and structural characterization of metallocrown ethers containing butterfly Fe\(_{2}\)S\(_{2}\) cluster cores. Biomimetic hydrogen evolution catalyzed by Fe\(_{2}(\mu \)-SCH\(_{2}\)CH\(_{2}\)OCH\(_{2}\)CH\(_{2}\)S-\(\mu \))(CO)\(_{6}\) Organometallics 25 5724CrossRefGoogle Scholar
  12. 12.
    Cheah M H, Tard C, Borg S J, Liu X M, Ibrahim S K, Pickett C J and Best S P 2007 Modeling Fe-Fe hydrogenase: evidence for bridging carbonyl and distal iron coordination vacancy in an electrocatalytically competent proton reduction by an iron thiolate assembly that operates through Fe(0)-Fe(II) levels J. Am. Chem. Soc. 129 11085CrossRefGoogle Scholar
  13. 13.
    Zhong W, Zampella G, Li Z M, De Gioia L, Liu Y Q, Zeng X R, Luo Q Y and Liu X M 2008 Synthesis, characterisation of two hexa-iron clusters with \(\{\)Fe\(_2\)S\(_2\)(CO)\(_{\rm x}\}\) (x \(=\) 5 or 6) fragments and investigation into their inter-conversion J. Organomet. Chem. 693 3751Google Scholar
  14. 14.
    Raubenheimer H G, Linford L and Lombard A V 1989 Preparation of Dinuclear Iron Carbonyl-Compounds Containing a 3-electron CH\(_{2}\)-S Bridging Fragment Organometallics 8 2062CrossRefGoogle Scholar
  15. 15.
    Ortega-Alfaro M C, Hernandez N, Cerna I, Lopez-Cortes J G, Gomez E, Toscano R A and Alvarez-Toledano C 2004 Novel dinuclear iron(0) complexes from alpha,beta-unsaturated ketones beta-positioned with sulfide and sulfoxide groups J. Organomet. Chem. 689 885CrossRefGoogle Scholar
  16. 16.
    Harb M K, Niksch T, Windhager J, Gorls H, Holze R, Lockett L T, Okumura N, Evans D H, Glass R S, Lichtenberger D L, El-Khateeb M and Weigand W 2009 Synthesis and Characterization of Diiron Diselenolato Complexes Including Iron Hydrogenase Models Organometallics 28 1039CrossRefGoogle Scholar
  17. 17.
    Royer A M, Rauchfuss T B and Gray D L 2009 Oxidative Addition of Thioesters to Iron(0): Active-Site Models for Hmd, Nature’s Third Hydrogenase Organometallics 28 3618CrossRefGoogle Scholar
  18. 18.
    Wang X F, Li Z M, Peng F, Ru X, Zeng X R, Luo Q Y and Liu X M 2009 Intramolecular formation and cleavage of C-S/N bonds promoted by iron-sulfur coordination chemistry Inorg. Chim. Acta 362 2065Google Scholar
  19. 19.
    Mousser H, Darchen A and Mousser A 2010 Unexpected fragmentation of phenyldithiobenzoate, formation and X-ray structure of mu,eta\(_{2}\)(S,S)-1,2-(dithio)-1,2-(diphenylethylene) diiron hexacarbonyl complex J. Organomet. Chem. 695 786CrossRefGoogle Scholar
  20. 20.
    Royer A M, Salomone-Stagni M, Rauchfuss T B and Meyer-Klaucke W 2010 Iron Acyl Thiolato Carbonyls: Structural Models for the Active Site of the Fe -Hydrogenase (Hmd) J. Am. Chem. Soc. 132 16997CrossRefGoogle Scholar
  21. 21.
    Song L C, Li Y L, Li L, Gu Z C and Hu Q M 2010 Synthetic and Structural Investigations of Linear and Macrocyclic Nickel/Iron/Sulfur Cluster Complexes Inorg. Chem. 49 10174Google Scholar
  22. 22.
    Windhager J, Apfel U P, Yoshino T, Nakata N, Gorls H, Rudolph M, Ishii A and Weigand W 2010 Reactions of 7,8-Dithiabicyclo 4.2.1 nona-2,4-diene 7-exo-Oxide with Dodecacarbonyl Triiron \({ \rm Fe}_{3}{\rm (CO)}_{12}\): A Novel Type of Sulfenato Thiolato Diiron Hexacarbonyl Complexes Chem-Asian J. 5 1600Google Scholar
  23. 23.
    Winter A, Zsolnai L and Huttner G 1982 Dinuclear and trinuclear carbonylairon complexes containing 1,2-dithiolato and 1,3-dithiolato bridging ligands Z. Naturforsch., B: Chem. Sci. 37 1430Google Scholar
  24. 24.
    Stanley J L, Rauchfuss T B and Wilson S R 2007 Studies on the condensation pathway to and properties of diiron azadithiolate carbonyls Organometallics 26 1907CrossRefGoogle Scholar
  25. 25.
    Wang H Y, Xie Y M, King R B and Schaefer H F 2006 Remarkable aspects of unsaturation in trinuclear metal carbonyl clusters: The triiron species Fe\(_{3}\)(CO)n (n=12, 11, 10, 9) J. Am. Chem. Soc. 128 11376CrossRefGoogle Scholar
  26. 26.
    Kiasat A R and Mehrjardi M F 2008 A Novel One-Step Synthesis of Symmetrical Dialkyl Trithiocarbonates in the Presence of Phase-Transfer Catalysis J. Chin. Chem. Soc. 55 639CrossRefGoogle Scholar
  27. 27.
    Lee A W M, Chan W H and Wong H C 1988 One Pot Phase Transfer Synthesis of Trithiocarbonates from Carbon Bisulphide and Alkyl Halides Synth. Commun. 18 1531Google Scholar
  28. 28.
    Larsen J and Lenoir C 1995 2,2’-Bi-5,6-Dihydro-1,3-Dithiolo 4,5-B 1,4 Dithinylidene (BEDT-TTF) - (1,3-Dithiolo 4,5-B 1,4 Dithiin, 2-(5,6-Dihydro-1,3-Dithiolo- 4,5-B 1,4 Dithiin-2-Ylidene)-5,6-DihydroI) Org. Synth. 72 265Google Scholar
  29. 29.
    Archer C M, Dilworth J R, Griffiths D V, Al-Jeboori M J, Kelly J D, Lu C, Rosser M J and Zheng Y 1997 Technetium and rhenium oxo-complexes of new tetradentate ligands with N\(_{2}\) donor sets J. Chem. Soc. Dalton Trans. 1403Google Scholar
  30. 30.
    Long L, Xiao Z Y, Zampella G, Wei Z H, De Gioia L and Liu X M 2012 The reactions of pyridinyl thioesters with triiron dodecacarbonyl: their novel diiron carbonyl complexes and mechanistic investigations Dalton Trans. 41 9482Google Scholar
  31. 31.
    Seyferth D, Womack G B, Archer C M and Dewan J C 1989 A Simple Route to Hexacarbonyl Diiron Complexes Containing A Bridging Thiolate and An Organic Bridging Ligand by Means of \((\mu \)-\({\rm RS})(\mu \)-\({\rm CO}){\rm Fe}_{2}{\rm (CO)}_{6}\) - Intermediates Organometallics 8 430Google Scholar
  32. 32.
    Volkers P I, Boyke C A, Chen J Z, Rauchfuss T B, Whaley C M, Wilson S R and Yao H J 2008 Precursors to FeFe-hydrogenase models: Syntheses of \({\rm Fe}_{2}{\rm (SR)}_{2}{\rm (CO)}_{6}\) from CO-free iron sources Inorg. Chem. 47 7002Google Scholar
  33. 33.
    Xiao Z Y, Xu F F, Long L, Liu Y Q, Zampella G, De Gioia L, Zeng X R, Luo Q Y and Liu X M 2010 Influence of the basicity of internal bases in diiron model complexes on hydrides formation and their transformation into protonated diiron hexacarbonyl J. Organomet. Chem. 695 721CrossRefGoogle Scholar
  34. 34.
    Zhong W, Tang Y, Zampella G, Wang X F, Yang X L, Hu B, Wang J A, Xiao Z Y, Wei Z H, Chen H W, De Gioia L and Liu X M 2010 A rare bond between a soft metal (Fe(l)) and a relatively hard base (RO\(^{-}\), R = phenolic moiety) Inorg. Chem. Commun. 13 1089Google Scholar
  35. 35.
    Tang Y, Wei Z H, Zhong W and Liu X M 2011 Diiron complexes with pendant phenol group(s) as mimics of the diiron subunit of FeFe -hydrogenase: Synthesis, characterisation, and electrochemical investigation Eur. J. Inorg. Chem. 1112Google Scholar
  36. 36.
    Tard C and Pickett C J 2009 Structural and Functional Analogues of the Active Sites of the Fe -, NiFe -, and FeFe -Hydrogenases Chem. Rev. 109 2245Google Scholar
  37. 37.
    Zeng X H, Li Z M, Xiao Z Y, Wang Y W and Liu X M 2010 Using pendant ferrocenyl group(s) as an intramolecular standard to probe the reduction of diiron hexacarbonyl model complexes for the sub-unit of FeFe -hydrogenase Electrochem. Commun. 12 342Google Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  1. 1.College of Biological, Chemical Sciences and EngineeringJiaxing UniversityJiaxingChina
  2. 2.Department of ChemistryNanchang UniversityNanchangChina

Personalised recommendations