Journal of Chemical Sciences

, Volume 129, Issue 10, pp 1603–1610 | Cite as

Enantioselective aminocatalysis: Michael addition of unactivated ketones to nitroolefins catalyzed by D-fructose derived monofunctional primary amine

  • Khiangte Vanlaldinpuia
  • Porag Bora
  • Grace Basumatary
  • Rahul Mohanta
  • Ghanashyam Bez
Rapid Communication


Organocatalytic asymmetric Michael addition is considered among the most extensively studied, yet challenging stereoselective reactions due to the fact that the electrophilic prochiral carbon in Michael acceptor lies away from stereodirecting groups of the catalyst. Although there is a report on stereoselective organocatalysis in Michael addition employing monofunctional secondary amine, the use of monofunctional primary amine for the said reaction is not reported till date. In fact, no monofunctional aminocatalyst is reported yet for the synthesis \(\upgamma \)-nitro carbonyl compounds. Here we report our preliminary results on the enantioselective Michael addition of different ketones to nitro olefins catalysed by monofunctional primary amine (1) derived from d-fructose.

Graphical Abstract

Monofunctional primary amine is used for the first time as catalyst for stereoselective Michael addition reaction of different ketones to nitro olefins to synthesize \(\upgamma \)-nitro carbonyl compounds.


Stereoselective aminocatalysis monofunctional amine d-fructose Michael addition nitroalkene 



Authors acknowledge the Council of Scientific and Industrial Research (CSIR), New Delhi, India for financial support (Scheme No. 1 (1992)/05/EMR-II). The analytical service provided by Sophisticated Analytical Instrument Facility, North Eastern Hill University, Shillong is gratefully acknowledged.

Supplementary material

12039_2017_1371_MOESM1_ESM.pdf (12.2 mb)
Supplementary material 1 (pdf 12500 KB)


  1. 1.
    List B, Pojarlier P and Martin H J 2001 Efficient proline-catalyzed Michael additions of unmodified ketones to nitro olefins Org. Lett.  3 2423CrossRefGoogle Scholar
  2. 2.
    Betancort J M, Sakthivel K, Thayumanavan R and Barbas C F III. 2001 Catalytic enantioselective direct Michael additions of ketones to alkylidinemalonates Tetrahedron Lett.  42 4441CrossRefGoogle Scholar
  3. 3.
    Krause N and Hoffmann-Röder A 2001 Recent advances in catalytic enantioselective Michael additions Synthesis  44 171CrossRefGoogle Scholar
  4. 4.
    Berner O M, Tedeschi L and Enders D 2002 Asymmetric Michael additions to nitroalkenes Eur. J. Org. Chem.  2002 1877Google Scholar
  5. 5.
    Christofers J and Baro A 2003 Construction of quaternary stereocenters: new perspectives through enantioselective Michael reactions Angew. Chem. Int. Ed.  42 1688CrossRefGoogle Scholar
  6. 6.
    Kaprzak A and Gawronski J 2001 Review on the use of cinchona alkaloids as organic catalyst Synthesis  961Google Scholar
  7. 7.
    Oare D A and Heathcock C H 1989 Stereochemistry of the base-promoted Michael addition reaction Top. Stereochem. 19 242Google Scholar
  8. 8.
    Wu F, Hong R, Khan J, Liu X and Deng L 2006 Asymmetric synthesis of chiral aldehyde by conjugate additions with bifunctional organocatalysis by cinchona alkaloids Angew. Chem. Int. Ed.  45 4301CrossRefGoogle Scholar
  9. 9.
    Wu F, Li H, Hong R, Deng L 2006 Construction of quaternary stereocenters by efficient and practical conjugate additions to \(\upalpha \),\(\upbeta \)-unsaturated ketones with a chiral organic catalyst Angew. Chem. Int. Ed.  45 947CrossRefGoogle Scholar
  10. 10.
    Brandes S, Niess B, Bella M, Prieto A, Overgaard J and Jorgensen K A 2006 Non-biaryl atropisomers in organocatalysis Chem. Eur. J.  12 6039CrossRefGoogle Scholar
  11. 11.
    Bell M, Frisch K and Jorgensen K A 2006 Organocatalytic asymmetric deconjugative Michael additions J. Org. Chem.  71 5407CrossRefGoogle Scholar
  12. 12.
    Takemoto Y 2005 Recognition and activation by ureas and thioureas: stereoselective reactions using ureas and thioureas as hydrogen-bonding donors Org. Biomol. Chem. 3 4299CrossRefGoogle Scholar
  13. 13.
    Connon S J 2006 Organocatalysis mediated by thiourea derivatives Chem. Eur. J. 12 5418CrossRefGoogle Scholar
  14. 14.
    Lu A, Gao P, Wu Y, Wang Y, Zhou Z and Tang C 2009 Highly enantio- and diastereoselective Michael addition of cyclohexanone to nitroolefins catalyzed by a chiral glucose-based bifunctional secondary amine-thiourea catalyst Org. Biomol. Chem.  7 3141CrossRefGoogle Scholar
  15. 15.
    Huang H and Jacobsen E N 2006 Highly enantioselective direct conjugate addition of ketones to nitroalkenes promoted by achiral primary amine-thiourea catalyst J. Am. Chem. Soc.  128 7170CrossRefGoogle Scholar
  16. 16.
    Inokuma T, Hoashi Y and Takemoto Y 2006 Thiourea-catalyzed asymmetric Michael addition of activated methylene compounds to \(\upalpha \),\(\upbeta \)-unsaturated imides: dual activation of imide by intra- and intermolecular hydrogen bonding J. Am. Chem. Soc.  128 9413CrossRefGoogle Scholar
  17. 17.
    Wang Y-Q, Song J, Hong R, Li H and Deng L 2006 Asymmetric Friedel–Crafts reaction of indoles with imines by an organic catalyst J. Am. Chem. Soc. 128 8156CrossRefGoogle Scholar
  18. 18.
    Luo S Z, Xu H, Mi X L, Li J Y, Zheng X X and Cheng J P 2006 Evolution of pyrrolidine-type asymmetric organocatalysts by “Click” chemistry J. Org. Chem.  71 9244CrossRefGoogle Scholar
  19. 19.
    Cobb A J A, Longbottom D A, Shaw D M and Ley S V 2004 5-Pyrrolidin-2-yltetrazole as an asymmetric organocatalyst for the addition of ketones to nitro-olefins Chem. Commun. 1808Google Scholar
  20. 20.
    Mase N, Thayumanavan R, Tanaka F and Barbas C F III 2004 Direct asymmetric organocatalytic Michael reactions of \(\upalpha \),\(\upalpha \)-disubstituted aldehydes with \(\upbeta \)-nitrostyrenes for the synthesis of quaternary carbon-containing products Org. Lett.  6 2527CrossRefGoogle Scholar
  21. 21.
    Alexakis A and Andrey O 2002 Diamine-catalyzed asymmetric Michael additions of aldehydes and ketones to nitrostyrene Org. Lett.   4 3611CrossRefGoogle Scholar
  22. 22.
    Ishii T, Fujioka S, Sekiguchi Y and Kotsuki H 2004 A new class of chiral pyrrolidine-pyridine conjugate base catalysts for use in asymmetric Michael addition reactions J. Am. Chem. Soc. 126 9558CrossRefGoogle Scholar
  23. 23.
    Wang W, Wang J and Li H 2005 Direct, highly enantioselective pyrrolidinesulfonamide catalyzed Michael addition of aldehydes to nitrostyrenes Angew. Chem. Int. Ed. 44 1369CrossRefGoogle Scholar
  24. 24.
    Cao C L, Ye M C, Sun X L and Tang Y 2006 Pyrrolidine-thiourea as a bifunctional organocatalyst: highly enantioselective Michael addition of cyclohexanone to nitroolefins Org. Lett.  8 2901CrossRefGoogle Scholar
  25. 25.
    Hayashi Y, Gotoh H, Hayashi T and Shoji M 2005 Diphenylprolinolsilylethers as efficient organocatalysts for the asymmetric Michael reaction of aldehydes and nitroalkenes Angew. Chem. Int. Ed.  44 4212CrossRefGoogle Scholar
  26. 26.
    Martin H J and List B 2003 Mining sequence space for asymmetric aminocatalysis: \(N\)-terminal prolylpeptides efficiently catalyze enantioselective Aldol and Michael reactions Synlett 1901Google Scholar
  27. 27.
    Palomo C, Vera S, Mielgo A and Gómez-Bengoa E 2006 Highly efficient asymmetric Michael addition of aldehydes to nitroalkenes catalyzed by a simple trans-4-hydroxyprolylamide Angew. Chem. Int. Ed.  45 5984CrossRefGoogle Scholar
  28. 28.
    Luo S Z, Mi X L, Song L Z, Xu H and Cheng J P 2006 Functionalized chiral ionic liquids as highly efficient asymmetric organocatalysts for Michael addition to nitroolefins Angew. Chem. Int. Ed. 45 3093CrossRefGoogle Scholar
  29. 29.
    Luo S Z, Mi X L, Liu S, Xu H and Cheng J P 2006 Surfactant-type asymmetric organocatalyst: organocatalytic asymmetric Michael addition to nitrostyrenes in water Chem. Commun. 3687Google Scholar
  30. 30.
    Almasi D, Alonso D Aand Nájera C 2006 Enantioselective conjugate addition of ketones to \(\upbeta \)-nitrostyrenes catalyzed by 1,2-amino alcohol-derived prolinamides Tetrahedron: Asymm. 17 2064Google Scholar
  31. 31.
    Reyes E, Vicario J L, Badia D and Carrillo L 2006 Organocatalyticasymmetric Michael addition of aldehydes to \(\upbeta \)-nitroacroleine dimethylacetal Org. Lett. 8 6135CrossRefGoogle Scholar
  32. 32.
    Clarke M L and Fuentes J A 2007 Self-assembly of organocatalysts: fine-tuning organocatalytic reactions Angew. Chem. Int. Ed.  46 930CrossRefGoogle Scholar
  33. 33.
    Barros M T and Phillips A M F 2007 Chiral piperazines as efficient catalysts for the asymmetric Michael addition of aldehydes to nitroalkenes Eur. J. Org. Chem. 178Google Scholar
  34. 34.
    Li P H, Wang L, Wang M and Zhang Y C 2008 Polymer-immobilized pyrrolidine-based chiral ionic liquids as recyclable organocatalysts for asymmetric Michael additions to nitrostyrenes under solvent-free reaction conditions Eur. J. Org. Chem. 1157Google Scholar
  35. 35.
    Mandal T and Zhao C G 2008 Modularlydesigned organocatalytic assemblies for direct Nitro Michael addition reactions Angew. Chem. Int. Ed.  47 7714CrossRefGoogle Scholar
  36. 36.
    Xue F, Zhang S, Duan W and Wang W 2008 A novel bifunctional sulphonamide primary amine-catalyzedenantioselective conjugate addition of ketones to nitroolefins Adv. Synth. Catal.  350 2194CrossRefGoogle Scholar
  37. 37.
    Gao P, Wang C, Wu Y, Zhou Z and Tang C 2008 Sugar-derived bifunctional thiourea organocatalyzed asymmetric Michael addition of acetylacetone to nitroolefins Eur. J. Org. Chem. 4563Google Scholar
  38. 38.
    Puglisi A, Benaglia M, Raimondi L, Lay L and Poletti L 2011 Novel carbohydrate-based bifunctional organocatalysts for nucleophilic addition to nitroolefins and imines Org. Biomol. Chem.  9 3295CrossRefGoogle Scholar
  39. 39.
    Agarwal J and Peddinti R K 2011 Asymmetric Michael addition catalysed by sugar-based prolinamides in solvent-free conditions Tetrahedron Lett. 52 117CrossRefGoogle Scholar
  40. 40.
    Pu X, Li P, Peng F, Li X, Zhang H and Shao Z 2009 Asymmetric conjugate addition of acetylacetone to nitroolefins with chiral organocatalysts derived from both \(\upalpha \)-amino acids and carbohydrates Eur. J. Org. Chem.  2009 4622Google Scholar
  41. 41.
    Pu X W, Peng F Z, Zhang H B and Shao Z H 2010 Doubly stereocontrolled asymmetric conjugate addition of acetylacetone to nitroolefins catalyzed by bifunctional tertiary amine–thiourea catalysts derived from both acyclic \(\upalpha \)-amino acids and carbohydrates Tetrahedron  66 3655CrossRefGoogle Scholar
  42. 42.
    Ishii T, Fujioka S, Sekiguchi S and Kotsuki H 2004 A new class of chiral pyrrolidine-pyridine conjugate base catalysts for use in asymmetric Michael addition reactions J. Am. Chem. Soc.  126 9558CrossRefGoogle Scholar
  43. 43.
    Ono N 2001 The Nitro Group in Organic Synthesis (New York: Wiley)CrossRefGoogle Scholar
  44. 44.
    Calderari G and Seebach D 1985 Asymmetrische Michael-Additionen. Stereoselektive Alkylierung chiraler, nicht racemischer Enolate durch Nitroolefine. Herstellung enantiomerenreiner \(\upgamma \)-Aminobuttersäure- und Bernsteinsäure-Derivate Helv. Chim. Acta  68 1592CrossRefGoogle Scholar
  45. 45.
    Czekelius C and Carreira E M 2005 Convenient transformation of optically active nitroalkanes into chiral aldoximes and nitriles Angew. Chem. Int. Ed.  44 612Google Scholar
  46. 46.
    Liu K, Cui H F, Nie J, Dong K Y, Li X J and Ma J A 2007 Highly enantioselective Michael addition of aromatic ketones to nitroolefinspromoted by chiral bifunctional primary amine-thioureacatalysts based on saccharides Org. Lett.  9 923CrossRefGoogle Scholar
  47. 47.
    Peelen T J, Chi Y and Gellman S H 2005 Enantioselective organocatalytic Michael additions of aldehydes to enones with imidazolidinones: Cocatalyst effects and evidence for an enamine intermediate J. Am. Chem. Soc.  127 11598CrossRefGoogle Scholar
  48. 48.
    Vanlaldinpuia K, Bora P and Bez G 2017 Monofunctional primary amine: A new class of organocatalyst for asymmetric Aldol reaction J. Chem. Sci.  129 301CrossRefGoogle Scholar
  49. 49.
    Guingant A and Hammami H 1991 Synthesis of optically active \(\upalpha \), \(\upalpha \)-disubstituted \(\upbeta \)-keto esters via chiral \(\upbeta \)-enamino esters Tetrahedron: Asym. 2 411CrossRefGoogle Scholar
  50. 50.
    Volpe T, Revial G, Pfau M and d’Angelo J 1987 Enantioselective synthesis of ring-C aromatic steroids by asymmetric Michael-type alkylation of chiral imines Tetrahedron Lett. 28 2367CrossRefGoogle Scholar
  51. 51.
    DFT calculation by employing B3LYP/6-311++G (d, p) basis set shows that E\(_{{\rm 1a}}\)= -711641.498 Kcal/mol and E\(_{{\rm 1b}}\)= -711641.875 Kcal/mol.Google Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  • Khiangte Vanlaldinpuia
    • 1
    • 2
  • Porag Bora
    • 1
  • Grace Basumatary
    • 1
  • Rahul Mohanta
    • 1
  • Ghanashyam Bez
    • 1
  1. 1.Department of ChemistryNorth Eastern Hill UniversityShillongIndia
  2. 2.Department of ChemistryPacchunga University CollegeAizawlIndia

Personalised recommendations