Advertisement

Journal of Chemical Sciences

, Volume 129, Issue 10, pp 1571–1577 | Cite as

Classical dynamics simulations of interstellar glycine formation via \(\hbox {CH}_{2} = \hbox {NH} + \hbox {CO} + \hbox {H}_{2}\hbox {O}\) reaction

  • Yogeshwaran Krishnan
  • Allen Vincent
  • Manikandan Paranjothy
Regular Article

Abstract

Formation of simple organic species such as glycine in the interstellar medium and transportation to earth via meteorites is considered to be a possible route for ‘Origin of Life’ on earth. Glycine formation has been proposed to occur via two different pathways involving formaldehyde (\(\hbox {HCHO}\)) and methanimine (\(\hbox {CH}_{2} = \hbox {NH}\)) as key intermediates. In the second pathway, which is the topic of this paper, \(\hbox {CH}_{2} = \hbox {NH}\) reacts with \(\hbox {CO}\) and \(\hbox {H}_{2} \hbox {O}\) forming neutral glycine. In a recent article (Nhlabatsi et al. in Phys. Chem. Chem. Phys. 18:375, 2016), detailed electronic structure calculations were reported for the reaction between \(\hbox {CH}_{2} = \hbox {NH}\), \(\hbox {CO}\) and \((\hbox {H}_{2} \hbox {O})_n\), \(n = 1, 2, 3\), and 4, forming glycine in the interstellar media. The presence of additional water molecule(s) for this reaction reduces reaction barrier - thus exhibiting a catalytic effect. This effect was described in terms of efficient proton transfer mediated by the additional water molecule through a relay transport mechanism. In the present article, we report ab initio classical trajectory simulations for the interstellar formation of glycine for the above mentioned reaction with \(n = 1\) and 2. The trajectories were generated on-the-fly over a density functional B3LYP/6-31++G(3df,2pd) potential energy surface. Our simulations indicate that the above proposed catalytic effect by the additional water molecule(s) may not be a classical effect.

Graphical Abstract

Synopsis: Glycine formation in the interstellar media via the \(\hbox {CH}_{2} = \hbox {NH} + \hbox {CO} + \hbox {H}_{2} \hbox {O}\) reaction was investigated by classical chemical dynamics simulations. This reaction has a large barrier which reduces in presence of additional water molecules. Our simulations indicate that the proposed catalytic effect by the additional water molecules may not be a classical effect.

Keywords

Classical ab initio dynamics interstellar glycine 

Notes

Acknowledgements

Funding from Department of Science and Technology, India, through grant number SB/FT/CS-053/2013 is acknowledged. Part of the simulations were carried out in C-DAC (NPSF) Computational facility, Pune, India.

Supplementary material

12039_2017_1367_MOESM1_ESM.pdf (626 kb)
Supplementary material 1 (pdf 626 KB)

References

  1. 1.
    Herbst E and van Dishoeck E F 2009 The Complex Organic Interstellar Molecules Annu. Rev. Astron. Astrophys. 47 427CrossRefGoogle Scholar
  2. 2.
    Oro J 1961 Comets and the Formation of Biochemical Compounds on the Primitive Earth Nature 190 389CrossRefGoogle Scholar
  3. 3.
    Burton A S, Stern J C, Elsila J E, Glavin D P and Dworkin J P 2012 Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites Chem. Soc. Rev. 41 5459CrossRefGoogle Scholar
  4. 4.
    Ruiz-Mirazo K, Briones C and De la Escosura A 2014 Prebiotic Systems Chemistry: New Perspectives for the Origins of Life Chem. Rev. 114 285CrossRefGoogle Scholar
  5. 5.
    Kuan Y J, Charnley S B, Huang H C, Tseng W L and Kisiel Z 2003 Interstellar Glycine Astrophys. J. 593 848CrossRefGoogle Scholar
  6. 6.
    Elsila J E, Aponte J C, Blackmond D G, Burton A S, Dworkin J P and Glavin D P 2016 Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories ACS Cent. Sci. 2 370CrossRefGoogle Scholar
  7. 7.
    Love S G and Brownlee D E 1993 A Direct Measurement of the Terrestrial Mass Accretion Rate of Cosmic Dust Science 262 550CrossRefGoogle Scholar
  8. 8.
    Martins Z, Alexandera C M O, Orzechowska G E, Fogel M L and Ehrenfreund P 2007 Indigenous amino acids in primitive CR meteorites Meteorit. Planet. Sci. 42 2125CrossRefGoogle Scholar
  9. 9.
    Ehrenfreund P, Glavin D P, Botta O, Cooper G and Bada J L 2001 Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of CI type carbonaceous chondrites Proc. Natl. Acad. Sci. U.S.A 98 2138CrossRefGoogle Scholar
  10. 10.
    Kvenvolden K A, Lawless J C and Ponnamperuma C 1971 Nonprotein Amino Acids in the Murchison Meteorite Proc. Natl. Acad. Sci. U.S.A 68 486CrossRefGoogle Scholar
  11. 11.
    Glavin D P, Bada J L,Brinton K L F and McDonald G D 1999 Amino acids in the Martian meteorite Nakhla Proc. Natl. Acad. Sci. U.S.A 96 8835CrossRefGoogle Scholar
  12. 12.
    Botta O, Glavin D P, Kminek G and Bada J L 2002 Relative amino acid concentrations as a signature for parent body processes of carbonaceous chondrites Astrophys. J. 32 143Google Scholar
  13. 13.
    Schmitt-kopplin P, Gabelica Z, Gougeon R D, Fekete A, Kanawati B, Harir M, Gebefuegi I, Eckel G and Hertkorn N 2010 High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall Proc. Natl. Acad. Sci. U.S.A. 107 2763CrossRefGoogle Scholar
  14. 14.
    Pizzarello S, Davidowski S K, Holland G P and Williams L B 2013 Processing of meteoritic organic materials as a possible analog of early molecular evolution in planetary environments Proc. Natl. Acad. Sci. U.S.A. 110 15614CrossRefGoogle Scholar
  15. 15.
    Jimenez-Serra I, Testi L Caselli P and Viti A 2014 Detectability of Glycine in Solar-Type System Precursors Astrophys. J. Lett. 787 L33CrossRefGoogle Scholar
  16. 16.
    Snyder L E, Loves F J, Hollis J M, Friedel D N, Jewell P R, Remijan A, Ilyushin V V, Alekseev E A and Dyubko S F 2005 A Rigorous Attempt to Verify Interstellar Glycine Astrophys. J. 619 914CrossRefGoogle Scholar
  17. 17.
    Hollis J M, Pedelty J A, Snyder L F, Jewell P R, Lovas F J, Palmer P and Liu S-Y 2003 A Sensitive Very Large Array Search for Small-Scale Glycine Emission toward OMC-1 Astrophys. J. 588 353CrossRefGoogle Scholar
  18. 18.
    Miller S L 1953 A Production of Amino Acids Under Possible Primitive Earth Conditions Science 117 528CrossRefGoogle Scholar
  19. 19.
    Dickens J E, Irvine W M, DeVries C H and Ohishi M 1997 Hydrogenation of Interstellar Molecules: A Survey for Methylenimine \(\text{ CH }_{2} \text{ NH }\) Astrophys. J. 479 307CrossRefGoogle Scholar
  20. 20.
    Salter C J, Ghosh T, Catinella B, Lebron M, Lerner M S, Minchin R and Momjian E 2008 The arecibo ARP 220 spectral census. I. Discovery of the pre-biotic molecule methanimine and new cm-wavelength transitions of other molecules Astron. J. 136 389CrossRefGoogle Scholar
  21. 21.
    Koch D M, Toubin C, Peslherbe G H and Hynes J T 2008 A Theoretical Study of the Formation of the Aminoacetonitrile Precursor of Glycine on Icy Grain Mantles in the Interstellar Medium J. Phys. Chem. C 112 2972CrossRefGoogle Scholar
  22. 22.
    Wang L P, Titov A, McGibbon R, Liu F, Pande V S and Martinez T J 2014 Discovering chemistry with an ab initio nanoreactor Nat. Chem. 6 1044CrossRefGoogle Scholar
  23. 23.
    Rimola A, Sodupe M and Ugliengo P 2010 Deep-space glycine formation via Strecker-type reactions activated by ice water dust mantles. A computational approach Phys. Chem. Chem. Phys. 12 5285CrossRefGoogle Scholar
  24. 24.
    Nhlabatsi Z P, Bhasi P and Sitha S 2016 Possible interstellar formation of glycine through a concerted mechanism: a computational study on the reaction of \(\text{ CH }_{2}\)[double bond, length as m-dash]\(\text{ NH }\), \(\text{ CO }_{2}\) and \(\text{ H }_{2}\) Phys. Chem. Chem. Phys. 18 20109CrossRefGoogle Scholar
  25. 25.
    Holtom P D, Bennett C J, Osamura Y, Mason N J and Kaiser R I 2005 A Combined Experimental and Theoretical Study on the Formation of the Amino Acid Glycine \(\text{ NH }_{2} \text{ CH }_{2} \text{ COOH }\) and its Isomer \(\text{ CH }_{3} \text{ NHCOOH }\) in Extraterrestrial Ices Astrophys. J. 626 940CrossRefGoogle Scholar
  26. 26.
    Lee C -W, Kim J -k, Moon E -S, Minh Y C and Kang H 2009 Formation of Glycine on Ultraviolet-Irradiated Interstellar Ice-Analog Films and Implications for Interstellar Amino Acids Astrophys. J. 697 428CrossRefGoogle Scholar
  27. 27.
    Suzuki T, Ohishi M, Hirota T, Saito M, Majumdar L and Wakelam V 2016 survey observations of a possible glycine precursor, methanimine \(\text{ CH }_{2}\text{ NH }\) Astrophys. J. 825 79CrossRefGoogle Scholar
  28. 28.
    Nhlabatsi Z P, Bhasi P and Sita S 2016 Possible interstellar formation of glycine from the reaction of \(\text{ CH }_{2} = \text{ NH }\), \(\text{ CO }\) and \(\text{ H }_{2} \text{ O }\): catalysis by extra water molecules through the hydrogen relay transport Phys. Chem. Chem. Phys. 18 375CrossRefGoogle Scholar
  29. 29.
    Rimola A, Sodupe M and Ugliengo P 2012 Computational Study of Interstellar Glycine Formation Occurring at Radical Surfaces of Water-Ice Dust Particles Astrophys. J. 754 24CrossRefGoogle Scholar
  30. 30.
    Gauld J W, Audier H, Fossey J and Radom L 1996 Water-Catalyzed Interconversion of Conventional and Distonic Radical Cations: Methanol and Methyleneoxonium Radical Cations J. Am. Chem. Soc. 118 6299CrossRefGoogle Scholar
  31. 31.
    Wang X, Sun W and Holmes J L 2006 Water-Assisted Interconversions and Dissociations of the Acetaldehyde Ion and Its Isomers. An Experimental and Theoretical Study J. Phys. Chem. A 110 8409CrossRefGoogle Scholar
  32. 32.
    Bromley S T, Goumans T P M, Herbst E, Jones A P and Slater B 2014 Challenges in modelling the reaction chemistry of interstellar dust Phys. Chem. Chem. Phys. 16 18623CrossRefGoogle Scholar
  33. 33.
    Botschwina P 2003 Spectroscopic properties of interstellar molecules Theory and experiment Phys. Chem. Chem. Phys. 5 3337CrossRefGoogle Scholar
  34. 34.
    Paranjothy M, Sun R, Zhuang Y and Hase W L 2013 Direct chemical dynamics simulations: coupling of classical and quasiclassical trajectories with electronic structure theory WIREs Comput. Mol. Sci. 3 296CrossRefGoogle Scholar
  35. 35.
    Sun L and Hase W L 2003 Born-Oppenheimer Direct Dynamics Classical Trajectory Simulations, In Reviews in Computational Chemistry, K B Lipkowitz, R Larter and T R Cundari (Eds.) (Hoboken, NJ, USA: John Wiley & Sons, Inc.) Vol. 19Google Scholar
  36. 36.
    Peslherbe G H, Wang H and Hase W L 1999 Monte Carlo Sampling for Classical Trajectory Simulations, In Advances in Chemical Physics: Monte Carlo Methods in Chemical Physics I Prigogine and S A Rice (Eds.) (Hoboken, NJ, USA: John Wiley & Sons, Inc.) Vol. 105CrossRefGoogle Scholar
  37. 37.
    Schlier C and Seiter A 1998 Symplectic Integration of Classical Trajectories: A Case Study J. Phys. Chem. A 102 9399CrossRefGoogle Scholar
  38. 38.
    Schlier C and Seiter A 2000 High-order symplectic integration: an assessment Comput. Phys. Commun. 130 176CrossRefGoogle Scholar
  39. 39.
    Hu X, Hase W L and Pirraglia T 1991 Vectorization of the general Monte Carlo classical trajectory program VENUS J. Comput. Chem. 12 1014CrossRefGoogle Scholar
  40. 40.
    Hase W L, Duchovic R J, Hu X, Komornicki A, Lim K F, Hong Lu D, Peslherbe G H, Swamy K N, De Linde S R V, Varandas A J C, Wang H and Wolf R J 1996 Quant. Chem. Prog. Exch. Bull. 16 43Google Scholar
  41. 41.
    Valiev M, Bylaska E, Govind N, Kowalski K, Straatsma T, Dam H V, Wang D, Nieplocha J, Apra E, Windus T and De Jong W 2010 NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations Comput. Phys. Commun. 181 1447CrossRefGoogle Scholar
  42. 42.
    Steinfeld J I, Francisco J S and Hase W L 1998 In Chemical Kinetics and Dynamics \(2^{\rm nd}\) edn. (US: Prentice Hall)Google Scholar
  43. 43.
    Bell R P 1980 In The Tunnel Effect in Chemistry \(1^{\rm st}\) edn. (US: Springer)Google Scholar
  44. 44.
    Benoit M, Marx D and Parrinello M 1998 Tunnelling and zero-point motion in high-pressure ice Nature 392 258CrossRefGoogle Scholar
  45. 45.
    Meng X, Guo J, Peng J, Chen J, Wang Z, Shi J -R, Li X -Z, Wang E -G and Jiang Y 2015 Direct visualization of concerted proton tunneling in a water nanocluster Nat. Phys. 11 235CrossRefGoogle Scholar
  46. 46.
    Drechsel-Grau C and Marx D 2015 Tunnelling in chiral water clusters: Protons in concert Nat. Phys. 11 216CrossRefGoogle Scholar
  47. 47.
    Si-Chuan X, Li-Ying M, Fu-Yong B, Qiang S, Mao-Fa G and Xing-Kang Z 2009 \(\text{ H }_{2} \text{ O }\) coupled proton transfer mechanism and hydrogen tunneling effects in the reaction of \(\text{ H }_{2} \text{ NCH }_{2} \text{ CN }\) with \(\text{ H }_{2} \text{ O }\) in the interstellar medium Acta Phys. -Chim. Sin. 25 2312Google Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology JodhpurJodhpurIndia

Personalised recommendations