Skip to main content
Log in

A new Co(III) complex of Schiff base derivative for electrochemical recognition of nitrite anion

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The synthesis and characterization of a new Co(III) complex of a salphen-type Schiff base ligand, (E)-2-{[(2-aminopyridin-3-yl)imino]methyl}-4,6-di-tert-butylphenol (HL), are reported. The characterization has been carried out using X-ray single crystallographic, thermogravimetric, and spectroscopic techniques. The complex has been combined with polyvinyl chloride (PVC) membrane of various compositions and tested as an electrochemical electrode towards recognition of several anions. The electrode exhibits exceptional electrochemical recognition for the nitrite \((\hbox {NO}_{2}^{-})\) anion in aqueous media. The electrode exhibited a linear response to \(\hbox {NO}_{2}^{-}\) with a detection limit of \(5.76\,{\upmu }\hbox {M}\) and displayed a linear Nernstian slope over the nitrite concentration range of \(1.0 \times 10^{-5}\)\(1.0\times 10^{-1}\,\hbox {M}\) in the pH range of 3–7 and a fast response time of less than 10 seconds. Theoretical calculations showed that the sensing could be via anion exchange in the Co(III) complex.

Graphical Abstract

SYNOPSIS An octahedral Co(III) complex of the salphen-type Schiff base, (E)-2-{[(2-aminopyridin-3-yl)imino]methyl}-4,6-di-tert-butylphenol, was synthesized, characterized and analyzed for its electrochemical anion recognition property through reversible anion exchange mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Busschaert N, Caltagirone C, Van Rossom W and Gale P A 2015 Applications of Supramolecular Anion Recognition Chem. Rev. 115 8038

    CAS  Google Scholar 

  2. Gale P A and Caltagirone C 2015 Anion sensing by small molecules and molecular ensembles Chem. Soc. Rev. 44 4212

    Article  CAS  Google Scholar 

  3. Kim D S and Sessler J L 2015 Calix[4]pyrroles: versatile molecular containers with ion transport, recognition, and molecular switching functions Chem. Soc. Rev. 44 532

    Article  Google Scholar 

  4. Vargas Jentzsch A 2015 Applications of halogen bonding in solution Pure Appl. Chem. 87 15

    CAS  Google Scholar 

  5. Kodamatani H, Yamazaki S, Saito K, Tomiyasu T and Komatsu Y 2009 Selective determination method for measurement of nitrite and nitrate in water samples using high-performance liquid chromatography with post-column photochemical reaction and chemiluminescence detection J. Chromatogr. A 1216 3163

    Article  CAS  Google Scholar 

  6. Kumar Malik A and Faubel W 2000 Capillary electrophoretic determination of zinc dimethyldithiocarbamate (Ziram) and zinc ethylenebisdithiocarbamate (Zineb) Talanta 52 341

    Article  CAS  Google Scholar 

  7. Royall P G, Craig D Q, Price D M, Reading M and Lever T J 1999 An investigation into the use of micro-thermal analysis for the solid state characterisation of an HPMC tablet formulation Int. J. Pharm. 192 97

    CAS  Google Scholar 

  8. Helaleh M I H and Korenaga T 2000 Ion chromatographic method for simultaneous determination of nitrate and nitrite in human saliva J. Chromatogr. B 744 433

    Article  CAS  Google Scholar 

  9. Croitoru M D 2012 Nitrite and nitrate can be accurately measured in samples of vegetal and animal origin using an HPLC-UV/VIS technique J. Chromatogr. B 911 154

    Article  CAS  Google Scholar 

  10. Afkhami A, Bahram M, Gholami S and Zand Z 2005 Micell-mediated extraction for the spectrophotometric determination of nitrite in water and biological samples based on its reaction with p-nitroaniline in the presence of diphenylamine Anal. Biochem. 336 295

    CAS  Google Scholar 

  11. Aydın A, Ercan Ö and Taşcıoğlu S 2005 A novel method for the spectrophotometric determination of nitrite in water Talanta 66 1181

    Article  Google Scholar 

  12. Senra-Ferreiro S, Pena-Pereira F, Lavilla I and Bendicho C 2010 Griess micro-assay for the determination of nitrite by combining fibre optics-based cuvetteless UV-vis micro-spectrophotometry with liquid-phase microextraction Anal. Chim. Acta 668 195

    Article  CAS  Google Scholar 

  13. Martinez-Tome M J, Esquembre R, Mallavia R and Mateo C R 2010 Development of a dual-analyte fluorescent sensor for the determination of bioactive nitrite and selenite in water samples J. Pharm. Biomed. Anal. 51 484

    Article  CAS  Google Scholar 

  14. Fang Y I, Ohata H and Honda K 2009 Fluorometric determination of nitrite with 2,3-diaminonaphthalene by reverse phase HPLC under alkaline conditions J. Pharmacol. Toxicol. Methods 59 153

    Article  CAS  Google Scholar 

  15. Fujii S, Tokuyama T, Abo M and Okubo A 2004 Fluorometric determination of sulfite and nitrite in aqueous samples using a novel detection unit of a microfluidic device Anal. Sci. 20 209

    CAS  Google Scholar 

  16. Evans N H and Beer P D 2014 Advances in anion supramolecular chemistry: from recognition to chemical applications Angew. Chem. Int. Ed. Engl. 53 11716

    Article  CAS  Google Scholar 

  17. Shariar S M and Hinoue T 2010 Simultaneous voltammetric determination of nitrate and nitrite ions using a copper electrode pretreated by dissolution/redeposition Anal. Sci. 26 1173

    CAS  Google Scholar 

  18. Gao Z, Wang G and Zhao Z 1990 Determination of trace amounts of nitrite by single-sweep polarography Anal. Chim. Acta 230 105

    Article  CAS  Google Scholar 

  19. Badea M, Amine A, Palleschi G, Moscone D, Volpe G and Curulli A 2001 New electrochemical sensors for detection of nitrites and nitrates J. Electroanal. Chem. 509 66

    Article  CAS  Google Scholar 

  20. Sharma B K, Shaikh A M, Chacko S and Kamble R M 2017 Synthesis, Spectral, Electrochemical and Theoretical Investigation of indolo[2,3-b]quinoxaline dyes derived from Anthraquinone for n–type materials J. Chem. Sci. 129 483

    Article  CAS  Google Scholar 

  21. Benjamin N, O’Driscoll F, Dougall H, Duncan C, Smith L, Golden M and McKenzie H 1994 Stomach NO synthesis Nature 368 502

    CAS  Google Scholar 

  22. Lundberg J O, Weitzberg E, Lundberg J M and Alving K 1994 Intragastric nitric oxide production in humans: measurements in expelled air Gut35 1543

    CAS  Google Scholar 

  23. Zweier J L, Wang P, Samouilov A and Kuppusamy P 1995 Enzyme-independent formation of nitric oxide in biological tissues Nat. Med. 1 804

    CAS  Google Scholar 

  24. Lijinsky W and Epstein S S 1970 Nitrosamines as environmental carcinogens Nature 225 21

    CAS  Google Scholar 

  25. Swann P F 1977 Carcinogenic risk from nitrite, nitrate and N-nitrosamines in food Proc. R. Soc. Med. 70 113

    CAS  Google Scholar 

  26. Reddy D, Lancaster J R Jr. and Cornforth D P 1983 Nitrite inhibition of Clostridium botulinum: electron spin resonance detection of iron-nitric oxide complexes Science 221 769

    Article  CAS  Google Scholar 

  27. Ganjali M R, Shirvani-Arani S, Norouzi P, Rezapour M and Salavati-Niasari M 2004 Novel Nitrite Membrane Sensor Based on Cobalt(II) Salophen for Selective Monitoring of Nitrite Ions in Biological Samples Microchim. Acta 146 35

    CAS  Google Scholar 

  28. Kocak A, Yilmaz H, Faiz O and Andac O 2016 Experimental and theoretical studies on Cu(II) complex of N,N’-disalicylidene-2,3-diaminopyridine ligand reveal indirect evidence for DNA intercalation Polyhedron 104 106

    Article  CAS  Google Scholar 

  29. Kleij A W, Kuil M, Lutz M, Tooke D M, Spek A L, Kamer P C J, van Leeuwen P W N M and Reek J N H 2006 Supramolecular zinc(II)-salphen motifs: Reversible dimerization and templated dimeric structures Inorg. Chim. Acta 359 1807

    CAS  Google Scholar 

  30. Górski Ł, Saniewska A, Parzuchowski P, Meyerhoff M E and Malinowska E 2005 Zirconium(IV)-salophens as fluoride-selective ionophores in polymeric membrane electrodes Anal. Chim. Acta 551 37

    Article  Google Scholar 

  31. Parsaei M, Asadi Z and Khodadoust S 2015 A sensitive electrochemical sensor for rapid and selective determination of nitrite ion in water samples using modified carbon paste electrode with a newly synthesized cobalt(II)-Schiff base complex and magnetite nanospheres Sens. Actuators, B 220 1131

  32. Carreno A, Ladeira S, Castel A, Vega A and Chavez I 2012 (E)-2-{[(2-Aminopyridin-3-yl)imino]methyl}-4,6-di-tert-butylphenol Acta Crystallogr. Sect. E 68 o2507

    Article  CAS  Google Scholar 

  33. Carreñoa A, Vegaa A, Zarateb X, Schottb E, Gacitúac M, Valenzuelac N, Preited M, Manríquezc J M and Chávezc I 2014 Synthesis, characterization and computational studies of (E)-2-{[(2-aminopyridin-3-yl)imino]-methyl}-4,6-di-tert-butylphenol Quim. Nova 37 584

    Google Scholar 

  34. Carreno A, Gacitua M, Paez-Hernandez D, Polanco R, Preite M, Fuentes J A, Mora G C, Chavez I and Arratia-Perez R 2015 Spectral, theoretical characterization and antifungal properties of two phenol derivative Schiff bases with an intramolecular hydrogen bond New J. Chem. 39 7822

    CAS  Google Scholar 

  35. Giannicchi I, Portalone G and Dalla Cort A 2013 Molecular aggregation of novel Zn(II)-salophenpyridyl derivatives Supramol. Chem. 25 709

    CAS  Google Scholar 

  36. Bruker 2014 APEX2 (Bruker AXS Inc.: Madison, WI, USA)

  37. Bruker 2013 SAINT (Bruker AXS Inc.: Madison, WI, USA)

  38. Bruker 2014 SADABS (Bruker AXS Inc.: Madison, WI, USA)

  39. Bruker 2013 SHELXTL (Bruker AXS Inc.: Madison, WI, USA)

  40. Spek A 2009 Structure validation in chemical crystallography Acta Crystallogr. Sect. D 65 148

    Article  CAS  Google Scholar 

  41. Macrae C F, Edgington P R, McCabe P, Pidcock E, Shields G P, Taylor R, Towler M and van de Streek J 2006 Mercury: visualization and analysis of crystal structures J. Appl. Crystallogr. 39 453

    Article  CAS  Google Scholar 

  42. Demir S, Yılmaz H, Dilimulati M and Andac M 2015 Spectral and thermal characterization of salophen type Schiff base and its implementation as solid contact electrode for quantitative monitoring of copper(II) ion Spectrochim. Acta A 150 523

    Article  CAS  Google Scholar 

  43. 58. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J and Fox D J 2009 Gaussian 09 (Wallingford CT: Gaussian, Inc.)

  44. Swart M, van der Wijst T, Fonseca Guerra C and Bickelhaupt F M 2007 \({\uppi }-{\uppi }\) stacking tackled with density functional theory J. Mol. Model. 13 1245

    Article  CAS  Google Scholar 

  45. Biancardi A, Burgalassi A, Terenzi A, Spinello A, Barone G, Biver T and Mennucci B 2014 A Theoretical and Experimental Investigation of the Spectroscopic Properties of a DNA-Intercalator Salphen-Type ZnII Complex Chem. Eur. J. 20 7439

    Article  CAS  Google Scholar 

  46. Biancardi A, Biver T, Secco F and Mennucci B 2013 An investigation of the photophysical properties of minor groove bound and intercalated DAPI through quantum-mechanical and spectroscopic tools Phys. Chem. Chem. Phys. 15 4596

    Article  CAS  Google Scholar 

  47. Robertazzi A, Magistrato A, de Hoog P, Carloni P and Reedijk J 2007 Density Functional Theory Studies on Copper Phenanthroline Complexes Inorg. Chem. 46 5873

    CAS  Google Scholar 

  48. Spinello A, Terenzi A and Barone G 2013 Metal complex–DNA binding: Insights from molecular dynamics and DFT/MM calculations J. Inorg. Biochem. 124 63

    Article  CAS  Google Scholar 

  49. Lauria A, Bonsignore R, Terenzi A, Spinello A, Giannici F, Longo A, Almerico A M and Barone G 2014 Nickel(II), copper(II) and zinc(II) metallo-intercalators: structural details of the DNA-binding by a combined experimental and computational investigation Dalton Trans. 43 6108

    Article  CAS  Google Scholar 

  50. Lv S, Jie S and Li B-G 2015 Highly active and stereospecific polymerization of 1,3-butadiene catalyzed by bis{[2-(4,5-diphenylimidazolyl)phenylimino]phenolate}cobalt(II) complexes J. Organomet. Chem. 799–800 108

    Article  Google Scholar 

  51. Alexopoulou K I, Zagoraiou E, Zafiropoulos T F, Raptopoulou C P, Psycharis V, Terzis A and Perlepes S P 2015 Mononuclear anionic octahedral cobalt(III) complexes based on \(N\)-salicylidene-o-aminophenol and its derivatives: Synthetic, structural and spectroscopic studies Spectrochim. Acta A 136 122

    Article  CAS  Google Scholar 

  52. Ghosh P, Chowdhury A R, Saha S K, Ghosh M, Pal M, Murmu N C and Banerjee P 2015 Synthesis and characterization of redox non-innocent cobalt(III) complexes of a O,N,O donor ligand: Radical generation, semi-conductivity, antibacterial and anticancer activities Inorg. Chim. Acta 429 99

    CAS  Google Scholar 

  53. Gong D, Wang B, Jia X and Zhang X 2014 The enhanced catalytic performance of cobalt catalysts towards butadiene polymerization by introducing a labile donor in a salen ligand Dalton Trans. 43 4169

    CAS  Google Scholar 

  54. Buck R P and Lindner E 1994 Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994) Pure Appl. Chem. 66 2527

    CAS  Google Scholar 

  55. Lindner E and Umezawa Y 2008 Performance evaluation criteria for preparation and measurement of macro-and microfabricated ion-selective electrodes (IUPAC Technical Report) Pure Appl. Chem. 80 85

    CAS  Google Scholar 

  56. Crespo G A, Ghahraman Afshar M, Barrabés N, Pawlak M and Bakker E 2015 Characterization of Salophen Co(III) Acetate Ionophore for Nitrite Recognition Electrochim. Acta 179 16

    CAS  Google Scholar 

  57. Umezawa Y, Bühlmann P, Umezawa K, Tohda K and Amemiya S 2000 Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic cations (technical report) Pure Appl. Chem. 72 1851

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Ricardo B. Metz from the University of Massachusetts for allowing to use computer clusters and software packages in the calculations; Serkan Demir and Omer Andac from Ondokuz Mayis University for their valuable advice. The numerical calculations reported in this paper were partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hakan Yilmaz or Muberra Andac.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 3637 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, H., Kocak, A., Dilimulati, M. et al. A new Co(III) complex of Schiff base derivative for electrochemical recognition of nitrite anion. J Chem Sci 129, 1559–1569 (2017). https://doi.org/10.1007/s12039-017-1363-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1363-6

Keywords

Navigation