Journal of Chemical Sciences

, Volume 129, Issue 10, pp 1531–1537 | Cite as

Macrocyclic cyclodiphosphazane \([\{\hbox {P}(\mu \hbox {-}^{t}\hbox {BuN})\}_{2}(\hbox {O}-m-\hbox {C}_{6}\hbox {H}_{4}\hbox {CHNCH}_{2})_{2}]_{2}\): synthesis of chalcogen derivatives and gold(I) complex

  • Vitthalrao S Kashid
  • Joel T Mague
  • Maravanji S Balakrishna
Regular Article


The synthesis of a Schiff base-appended macrocycle \([\{\hbox {P}({\mu }\hbox {-}^{t}\hbox {BuN})\}_{2}(\hbox {O}-m-\hbox {C}_{6}\hbox {H}_{4}\hbox {CHNCH}_{2})_{2}]_{2}\) (1) containing cyclodiphosphazane moieties is described. Reactions of 1 with \(\hbox {H}_{2}\hbox {O}_{2}\) and elemental selenium yielded derivatives tetrakis(oxide) \([\{\hbox {P(O)}({\mu }\hbox {-}^{t}\hbox {BuN})\}_{2}(\hbox {O}-m-\hbox {C}_{6}\hbox {H}_{4}\hbox {CHNCH}_{2})_{2}]_{2}\) (2) and tetrakis(selenide)\([\{\hbox {P(Se)}(\mu \hbox {-}^{t}\hbox {BuN})\}_{2}(\hbox {O}-m-\hbox {C}_{6}\hbox {H}_{4}\hbox {CHNCH}_{2})_{2}]_{2}\) (3), in \(\sim \)80% yield. Tetragold complex \([\hbox {Au}_{4}\hbox {Cl}_{4}\{\{\hbox {P}( \mu \hbox {-}^{t}\hbox {BuN})\}_{2}(\hbox {O}-m-\hbox {C}_{6}\hbox {H}_{4}\hbox {CHNCH}_{2})_{2}\}_{2}\)] (4) was prepared by reacting 1 with [\(\hbox {AuCl}(\hbox {SMe}_{2})\)] in 1:4 molar ratio. All the compounds have been characterized by various spectroscopic techniques. The molecular structure of 3 was confirmed by single crystal X-ray analysis.

Graphical Abstract

SYNOPSIS The synthesis of chalcogenides and gold complex of a Schiff base appended cyclodiphosphazane containing macrocycle \([\{\hbox {P}({\mu }\hbox {-}^{t}\hbox {BuN})\}_{2}(\hbox {O}-m-\hbox {C}_{6}\hbox {H}_{4}\hbox {CHNCH}_{2})_{2}]_{2}\)is described.


Cyclodiphosphazanes chalcogen selenide macrocycle gold(I) 



This work was supported by a Grant SB/S1/IC-108/2014 from Science & Engineering Research Board (SERB), New Delhi, India. VSK thanks UGC, New Delhi for Senior Research Fellowship (SRF) and IRCC for financial support. We also thank the Department of Chemistry and Instrumentation Facilities, IIT Bombay, for spectral and analytical data. JTM thanks the Louisiana Board of Regents for the purchase of the CCD diffractometer and the Chemistry Department of Tulane University for support of the X-ray laboratory.

Supplementary material

12039_2017_1358_MOESM1_ESM.doc (562 kb)
Supplementary material 1 (doc 562 KB)


  1. 1.
    Balakrishna M S, Eisler D J and Chivers T 2007 Chemistry of pnictogen(III)-nitrogen ring systems Chem. Soc. Rev. 36 650CrossRefGoogle Scholar
  2. 2.
    Stahl L 2000 Bicyclic and tricyclic bis(amido)cyclodiphosph(III)azane compounds of main group elements Coord. Chem. Rev. 210 203Google Scholar
  3. 3.
    Balakrishna M S 2016 Cyclodiphosphazanes: options are endless Dalton Trans. 45 12252CrossRefGoogle Scholar
  4. 4.
    Ananthnag G S, Kuntavalli S, Mague J T and Balakrishna M S 2012 Resorcinol based acyclic dimeric and cyclic di- and tetrameric cyclodiphosphazanes: Synthesis, structural studies, and transition metal complexes Inorg. Chem. 51 5919Google Scholar
  5. 5.
    Nordheider A, Chivers T, Thirumoorthi R, Vargas-Baca I and Woollins J D 2012 Planar \({\rm P}_{6}{\rm E}_{6}\) (E = Se, S) macrocycles incorporating \({\rm P}_{2}{\rm N}_{2}\) scaffolds Chem. Commun. 48 6346Google Scholar
  6. 6.
    Calera S G and Wright D S 2010 Macrocyclic phosphazane ligands Dalton Trans. 39 5055CrossRefGoogle Scholar
  7. 7.
    Gonzalez-Calera S, Eisler D J, Morey J V, McPartlin M, Singh S and Wright D S 2008 The Selenium-Based Hexameric Macrocycle [(Se)P(\(\mu \)-\({\rm N}^{t}{\rm Bu})_{2}{\rm P}(\mu -{\rm Se})]_{6}\) Angew. Chem. Int. Ed. 47 1111CrossRefGoogle Scholar
  8. 8.
    Dodds F, Garcia F, Kowenicki R A, McPartlin M, Steiner A and Wright D S 2005 Synthesis and structure of the calixarene-like phosph(III)azane macrocycle [P(\(\mu \)-\({\rm N}^{t}{\rm Bu})\}_{2}\{1,5-({\rm NH})_{2}{\rm C}_{10}{\rm H}_{6}\}]_{3}\) Chem. Commun. 3733Google Scholar
  9. 9.
    Chakravarty M, Kommana P and Kumara Swamy K C 2005 Non-stoichiometry induced by differential oxygen/lone pair occupation in chiral bicyclic 1,1[prime or minute]-binaphthoxy cyclodiphosphazanes Chem. Commun. 5396Google Scholar
  10. 10.
    Kommana P and Kumara Swamy K C 2000 Synthesis and Structural Characterization of a New Class of Macrocycles Based on a Cyclodiphosphazane Skeleton Inorg. Chem. 39 4384Google Scholar
  11. 11.
    Rastatter M, Muterle R B, Roesky P W and Thiele S K H 2009 Bis(amido)cyclodiphosph(III)azane Complexes of Yttrium and the Lanthanides Chem. Eur. J. 15 474CrossRefGoogle Scholar
  12. 12.
    Chandrasekaran P, Mague J T and Balakrishna M S 2006 Copper(I) coordination polymers \([\{{\rm Cu}(\mu -{\rm X})\}_{2}\{{\rm RP}({\mu }-{\rm N}^{t}{\rm Bu}) \}_{2}]_{{\rm n}} ({\rm R}={\rm OC}_{6}{\rm H}_{4}\)OMe-o; X = Cl, Br, and I) and their reversible conversion into mononuclear complexes [CuX(RP(\(\mu -{\rm N}^{t}{\rm Bu}))_{2}\}_{2}\)]: Synthesis and structural characterization Inorg. Chem. 45 6678Google Scholar
  13. 13.
    Schranz I, Lief G R, Carrow C J, Haagenson D C, Grocholl L, Stahl L, Staples R J, Boomishankar R and Steiner A 2005 Reversal of polarization in amidophosphines: neutral- and anionic-\(\kappa P\) coordination vs. anionic-\(\kappa P,N\) coordination and the formation of nickelaazaphosphiranes Dalton Trans. 3307Google Scholar
  14. 14.
    Bond A D, Doyle E L, Garcia F, Kowenicki R A, McPartlin M, Riera L and Wright D S 2003 Exo-metal coordination by a tri-cyclic \({\rm [\{P(\mu -N-2-NC_{5}{H}_{4})\}_{2}(\mu -O)]_{2}}\) \(dimer in {\rm {[\{{\rm P}(\mu -{\rm N}-2-{\rm NC}_{5}{\rm H}_{4})\}_{2}( \mu -{\rm O})]_{2}}}{\rm CuCl}\cdot ({\rm C}_{5}{\rm H}_{5}{\rm N})_{2}\}_{4}\) (\(2\text{-}{\rm NC}_{5}{\rm H}_{4}=2-{\rm pyridyl}, {\rm C}_{5}{\rm H}_{5}{\rm N}={\rm pyridine}\)) Chem. Commun. 2990Google Scholar
  15. 15.
    Lief G R, Carrow C J, Stahl L and Staples R J 2001 Mono- and di-nickellaazaphosphiranes of mono- and bis(amido)cyclodiphosph(III)azanes Chem. Commun. 1562Google Scholar
  16. 16.
    Grocholl L, Stahl L and Staples R J 1997 Synthesis and single-crystal X-ray structures of \([({\rm Bu}^{t}{\rm NP})_{2}({\rm Bu}^{t}{\rm N})_{2}]{\rm MCl}_{2}\) (M = Zr, Hf): the first transition-metal bis(alkylamido)cyclodiphosphazane complexes Chem. Commun. 1465Google Scholar
  17. 17.
    Balakrishna M S, Suresh D, Rai A, Mague J T and Panda D 2010 Dinuclear copper(I) complexes containing cyclodiphosphazane derivatives and pyridyl ligands: Synthesis, structural studies, and antiproliferative activity toward human cervical and breast cancer cells Inorg. Chem. 49 8790Google Scholar
  18. 18.
    Suresh D, Balakrishna M S, Rathinasamy K, Panda D and Mobin S M 2008 Water-soluble cyclodiphosphazanes: Synthesis, gold(i) metal complexes and their in vitro antitumor studies Dalton Trans. 2812Google Scholar
  19. 19.
    Kreno L E, Leong K, Farha O K, Allendorf M, Van Duyne R P and Hupp J T 2012 Metal–Organic Framework Materials as Chemical Sensors Chem. Rev. 112 1105Google Scholar
  20. 20.
    Cui Y, Yue Y, Qian G and Chen B 2012 Luminescent Functional Metal–Organic Frameworks Chem. Rev. 112 1126CrossRefGoogle Scholar
  21. 21.
    Axenov K V, Kotov V V, Klinga M, Leskelä M and Repo T 2004 New Bulky Bis(amino)cyclodiphosph(III)azanes and Their Titanium(IV) Complexes: Synthesis, Structures and Ethene Polymerization Studies Eur. J. Inorg. Chem. 695Google Scholar
  22. 22.
    Axenov K V, Klinga M, Leskela M, Kotov V and Repo T 2004 [Bis(amido)cyclodiphosph(III)azane]dichlorozirconium Complexes for Ethene Polymerization Eur. J. Inorg. Chem. 4702Google Scholar
  23. 23.
    Roth T, Wadepohl H, Wright D S and Gade L H 2013 Chiral Ditopic Cyclophosphazane (CycloP) Ligands: Synthesis, Coordination Chemistry, and Application in Asymmetric Catalysis Chem. Eur. J. 19 13823CrossRefGoogle Scholar
  24. 24.
    Ananthnag G S, Mague J T and Balakrishna M S 2015 Self-Assembled Cyclophane-Type Copper(I) Complexes of 2,4,6-Tris(diphenylphosphino)-1,3,5-triazine and Their Catalytic Application Inorg. Chem. 54 10985Google Scholar
  25. 25.
    Ananthnag G S, Mague J T and Balakrishna M S 2015 A cyclodiphosphazane based pincer ligand, \([2,6-\{{\mu }\text{- }(^{t}{\rm BuN})_{2}{\rm P}(^{t}{\rm BuHN}){\rm PO}\}_{2}{\rm C}_{6}{\rm H}_{3}\)I]: Ni(II), Pd(II), Pt(II) and Cu(I) complexes and catalytic studies Dalton Trans. 44 3785CrossRefGoogle Scholar
  26. 26.
    Siddiqui M M, Mobin S M, Senkovska I, Kaskel S and Balakrishna M S 2014 Novel zeotype frameworks with soft cyclodiphosphazane linkers and soft \({\rm Cu}_{4}{\rm X}_{4}\) clusters as nodes Chem. Commun. 50 12273Google Scholar
  27. 27.
    Siddiqui M M, Mague J T and Balakrishna M S 2015 Diamondoid-Type Copper Coordination Polymers Containing Soft Cyclodiphosphazane Ligands Inorg. Chem. 54 6063Google Scholar
  28. 28.
    Beweries T, Kuzora R, Rosenthal U, Schulz A and Villinger A 2011 [P(\(\mu \)-NTer)]\(_{2}\): A Biradicaloid That Is Stable at High Temperature Angew. Chem. Int. Ed. 50 8974CrossRefGoogle Scholar
  29. 29.
    Hering C, Schulz A and Villinger A 2012 Low-Temperature Isolation of An Azidophosphenium Cation Angew. Chem. Int. Ed. 51 6241CrossRefGoogle Scholar
  30. 30.
    Hinz A, Schulz A and Villinger A 2014 New P-N Cage Compounds Generated by Small-Molecule Activation Chem. Eur. J. 20 3913CrossRefGoogle Scholar
  31. 31.
    Hinz A, Schulz A and Villinger A 2015 Stable Heterocyclopentane-1,3-diyls Angew. Chem. Int. Ed. 54 2776CrossRefGoogle Scholar
  32. 32.
    Hinz A, Schulz A and Villinger A 2015 Tunable Cyclopentane-1,3-diyls Generated by Insertion of Isonitriles into Diphosphadiazanediyls J. Am. Chem. Soc. 137 9953CrossRefGoogle Scholar
  33. 33.
    Mayer P, Schulz A and Villinger A 2007 \(\text{GaCl }_{3}\)-assisted [3 + 2] cycloaddition: A route to new binary PN-heterocycles J. Organomet. Chem. 692 2839CrossRefGoogle Scholar
  34. 34.
    Stahl L 2000 Bicyclic and tricyclic bis(amido)cyclodiphosph(III)azane compounds of main group elements Coord. Chem. Rev. 210 203CrossRefGoogle Scholar
  35. 35.
    Silaghi-Dumitrescu I, Lara-Ochoa F and Haiduc I 1998 Edge or Verte Inversion at Phosphorus in the cis-trans Isomerization of Diazadiphosphetidines? Model MNDO and ab initio Molecular Orbital Calculations Main Group Chem. 2 309Google Scholar
  36. 36.
    Balakrishna M S, Reddy V S, Krishnamurthy S S, Nixon J F and Laurent J C T R B S 1994 Coordination chemistry of diphosphinoamine and cyclodiphosphazane ligands Coord. Chem. Rev. 129 1Google Scholar
  37. 37.
    Chandrasekaran P, Mague J T and Balakrishna M S 2005 Tetranuclear Rhodium(I) Macrocycle Containing Cyclodiphosphazane \([{\rm Rh}_{2}(\mu \text{- }Cl)_{2}\)(CO)\(_{2}\)[(\(^{t}{\rm BuNP}({\rm OC}_{6}{\rm H}_{4}{\rm OMe}\text{- }{\rm o}))_{2}-\kappa {\rm P}]]_{2}\) and Its Reversible Conversion into trans-\([{\rm Rh(CO)Cl}\{(^{t}{\rm BuNP}({\rm OC}_{6}{\rm H}_{4}{\rm OMe}\text{- }{\rm o}))_{2}-\kappa {\rm P}\}_{2}]\) Organometallics 24 3780Google Scholar
  38. 38.
    Chandrasekaran P, Mague J T and Balakrishna M S 2005 Cyclodiphosphazanes with Hemilabile Ponytails: Synthesis, Transition Metal Chemistry (Ru(II), Rh(I), Pd(II), Pt(II)), and Crystal and Molecular Structures of Mononuclear (Pd(II), Rh(I)) and Bi- and Tetranuclear Rhodium(I) Complexes Inorg. Chem. 44 7925Google Scholar
  39. 39.
    Chandrasekaran P, Mague J T and Balakrishna M S 2006 Intramolecular Amine-Induced [1,3]-Sigmatropic Rearrangement in the Reactions of Aminophosphinites or Phosphites with Elemental Sulfur or Selenium Inorg. Chem. 45 5893Google Scholar
  40. 40.
    Balakrishna M S, Chandrasekaran P and Venkateswaran R 2007 Functionalized cyclodiphosphazanes cis-[\(^{t}{\rm BuNP(OR)}]_{2}\) (\({\rm R}={\rm C}_{6}{\rm H}_{4}{\rm OMe}\text{- }{\rm o}, {\rm CH}_{2}{\rm CH}_{2}{\rm OMe}\), \({\rm CH}_{2}{\rm CH}_{2}{\rm SMe}, {\rm CH}_{2}{\rm CH}_{2}{\rm NMe}_{2})\) as neutral 2e, 4e or 8e donor ligands J. Organomet. Chem. 692 2642CrossRefGoogle Scholar
  41. 41.
    Chandrasekaran P, Mague J T and Balakrishna M S 2007 One-dimensional silver(I) coordination polymers containing cyclodiphosphazane, cis-\(\{({\rm o}\text{- }{\rm MeOC}_{6}{\rm H}_{4}{\rm O}){\rm P}(\mu -{\rm N}^{t}{\rm Bu})\}_{2 }\) Dalton Trans. 2957Google Scholar
  42. 42.
    Suresh D, Balakrishna M S and Mague J T 2008 Novel octanuclear copper(I) metallomacrocycles and their transformation intohexanuclear 2-dimensional grids of copper(I) coordination polymerscontaining cyclodiphosphazanes, \([(\mu -{\rm N}^{t}{\rm BuP})_{2}({\rm NC}_{4}{\rm H}_{8}{\rm X})_{2}\)] (X = NMe, O) Dalton Trans. 3272Google Scholar
  43. 43.
    Chandrasekaran P, Mague J T and Balakrishna M S 2009 Gold(I) complexes of cyclodiphosphazanes cis-\(\{{\rm RP}(\mu -{\rm N}^{t}{\rm Bu})\}_{2}\): structure of a novel tetranuclear gold(I) macrocycle, \({\rm [\{Au\{(o-MeOC_{6}H_{4}O)P({\mu }-N^{t}Bu)\}_{2}\}_{4}](ClO_{4})_{4}}\) Dalton Trans. 5478Google Scholar
  44. 44.
    Balakrishna M S, Venkateswaran R and Mague J T 2010 Transition metal chemistry of cyclodiphosphanes containing phosphine and amide-phosphine functionalities: Formation of a stable dipalladium(II) complex containing a Pd-P \(\sigma \)-bond Dalton Trans. 39 11149CrossRefGoogle Scholar
  45. 45.
    Armarego W L and Perrin D D 1996 In Purification of Laboratory Chemicals 4th edn. (Oxford: Butterworth-Heinemann Linacre House, Jordan Hill)Google Scholar
  46. 46.
    Bashall A, Doyle E L, Tubb C, Kidd S J, McPartlin M, Woods A D and Wright D S 2001 The tetrameric macrocycle \([\{{\rm P}(\mu -{\rm N}^{t}{\rm Bu})\}_{2}{\rm NH}]_{4}\) Chem. Commun. 2542Google Scholar
  47. 47.
    Brandys M-C, Jennings M C and Puddephatt R J 2000 Luminescent gold(I) macrocycles with diphosphine and 4,4’-bipyridyl ligands J. Chem. Soc., Dalton Trans. 4601Google Scholar
  48. 48.
    Bruker-AXS, SAINT + , Version 7.03, Madison, WI,, 2006Google Scholar
  49. 49.
    Sheldrick G W 2008 SHELXL and SHELXS Acta Cryst. A64 112CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  1. 1.Phosphorus Laboratory, Department of ChemistryIndian Institute of Technology BombayPowai, MumbaiIndia
  2. 2.Department of ChemistryTulane UniversityNew OrleansUSA

Personalised recommendations