Journal of Chemical Sciences

, Volume 129, Issue 10, pp 1513–1520 | Cite as

Synthesis and phosphatase activity of a Cobalt(II) phenanthroline complex

  • Mamoni Garai
  • Dhananjay Dey
  • Hare Ram Yadav
  • Milan Maji
  • Angshuman Roy Choudhury
  • Bhaskar Biswas
Regular Article

Abstract

A mononuclear cobalt(II) complex, [\(\hbox {Co}\hbox {(phen)}_{2}\hbox {Cl}_{2}\)], (phen = 1,10-phenanthroline) has been synthesized and structurally characterized by different spectroscopic methods including single crystal X-ray structural study. X-ray crystal structural analysis revealed that the cobalt(II) complex crystallizes in a monoclinic system with C2 / c space group and exists in cis-configuration in its crystalline state. Room temperature magnetic measurement accounts for 3e paramagnetism and indicates high spin cobalt(II) in the solid state. The cobalt(II) complex has been evaluated as a functional model for phosphatase enzyme by using 4-nitrophenylphosphate (PNPP) as a standard substrate in aqueous DMF medium. This mononuclear cobalt(II) complex exhibits good hydrolytic phosphoester cleavage efficiency with \(k_{\mathrm{cat}}\) value of \(3.78\times 10^{2}\hbox {h}^{-1}\).

Graphical Abstract

SYNOPSIS The cobalt(II) complex of phenanthroline exhibits good catalytic activity towards 4-nitrophenylphosphate (PNPP) as a standard substrate in aqueous DMF medium with \(k_{\mathrm{cat}}\) value of \(3.78\times 10^{2} \hbox { h}^{-1}\).
.

Keywords

Cobalt(II) 1,10-phenanthroline crystal structure supramolecular interactions phosphatase activity 

Notes

Acknowledgements

BB gratefully acknowledges the Science & Engineering Research Board (SERB), a statutory body under Department of Science and Technology (DST), New Delhi for financial support under the FAST TRACK SCHEME for YOUNG SCIENTIST (No. SB/FT/CS-088/2013 dtd. 21/05/2014). ARC and HRY thank IISER Mohali for XtaLab mini diffractometer facility. HRY thanks IISER Mohali for senior research fellowship. This research work is dedicated to Dr. Pradeepta Guptaray, Principal, Dum Dum Motijheel College, Kolkata 700 074, West Bengal, India for remaining a constant source of inspiration.

Supplementary material

12039_2017_1355_MOESM1_ESM.docx (287 kb)
Supplementary material 1 (docx 286 KB)

References

  1. 1.
    (a) Hage R and Lienke A 2006 Applications of transition-metal catalysts to textile and wood-pulp bleaching Angew. Chem. 118 212; (b) De A, Dey D, Yadav H R, Maji M, Rane V, Kadam R M, Choudhury A R and Biswas B 2016 Unprecedented hetero-geometric discrete copper(II) complexes: Crystal structure and bio-mimicking of Catecholase activity J. Chem. Sci. 128 1775Google Scholar
  2. 2.
    (a) Duran D and Esposito E 2000 Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: A review Appl. Catal. B  28 83; (b) Dey D, Kaur G, Ranjani A, Gyathri L, Chakraborty P, Adhikary J, Pasan J, Dhanasekaran D, Choudhury A R, Akbarsha M A, Kole N and Biswas B 2014 A trinuclear zinc-Schiff base complex: Bio-catalytic activity and cytotoxicity Eur. J. Inorg. Chem. 3350Google Scholar
  3. 3.
    (a) Kaim W and Schwederski B 1993 Bioanorganische Chemie (Series: Teubner, Stuttgart) In Bioinorganic Catalysis J Reedijk (Ed.) (New York: Marcel Dekker); (b) Que L and Tolman W B 2008 Biologically inspired oxidation catalysis Nature  455 333; (c) Pal S, Chowdhury B, Patra M, Maji M and Biswas B 2015 Ligand centered radical pathway in catechol oxidase activity with a trinuclear zinc-based model: Synthesis, structural characterization and luminescence properties Spectrochim. Acta Part A Mol. Biomol. Spect.  144 148Google Scholar
  4. 4.
    (a) Trawick B N, Daniher A T and Bashkin J K 1998 Inorganic mimics of ribonucleases and ribozymes: From random cleavage to sequence-specific chemistry to catalytic antisense drugs. Chem. Rev.  98 939; (b) Ermens A A, Vlasveld L T and Lindemans J 2003 Significance of elevated cobalamin (vitamin B12) levels in blood 2003 Clin. Biochem.  36 585Google Scholar
  5. 5.
    (a) Wang J, Yang M, Dong W, Jin Z, Tang J, Fan S, Lu Y and Wang G 2016 Co(II) complexes loaded into metal–organic frameworks as efficient heterogeneous catalysts for aerobic epoxidation of olefins Catal. Sci. Technol. 6 161; (b) Dey D, Basu Roy A, Shen C-Y, Tsai H-L, Ranjani A, Gayathri L, Chandraleka S, Dhanasekaran D, Akbarsha M A, Kole N and Biswas B 2015 Synthesis and bio-catalytic activity of isostructural cobalt(III)-phenanthroline complexes J. Chem. Sci. 127 649Google Scholar
  6. 6.
    (a) Das S, Pasan J, Gayathri L, Saha S, Chandraleka S, Maji M, Dhanasekaran D, Akbarsha M A, Kole N and Biswas B 2016 Recognition of self-assembled water-nitrate cluster in a Co(III)-2,2’-bipyridine host: Synthesis, crystal structure, DNA cleavage, molecular docking and anticancer activity J. Chem. Sci. 128 1755; (b) Dauma L J, Comba P, Larrabee J A, Schenk G, Stranger R, Cavigliasso G and Gahan L R 2013 Synthesis, magnetic properties, and phosphoesterase activity of dinuclear cobalt(II) complexes Inorg. Chem. 52 2029Google Scholar
  7. 7.
    Matsuura T 1977 Bio-mimetic oxygenation by cobalt complexes Tetrahedron 33 2869CrossRefGoogle Scholar
  8. 8.
    Chen D and Martell A E 1987 Dioxygen affinities of synthetic cobalt Schiff base complexes Inorg. Chem. 26 1026CrossRefGoogle Scholar
  9. 9.
    Busch D H and Alcock N W 1994 Iron and cobalt “lacunar” complexes as dioxygen carriers Chem. Rev. 94 585CrossRefGoogle Scholar
  10. 10.
    Singh A K and Mukherjee R 2008 Cobalt(II) and cobalt(III) complexes of thioether-containing hexadentate pyrazine amide ligands: C–S bond cleavage and cyclometallation reaction Dalton Trans. 260Google Scholar
  11. 11.
    Wang F, Cao B, To W P, Tse C W, Li K, Chang X Y, Zang C, Chan S L F and Che C F 2016 The effects of chelating \(\text{ N }_{4}\) ligand coordination on Co(II)-catalysed photochemical conversion of \(\text{ CO }_{2}\) to CO: Reaction mechanism and DFT calculations Catal. Sci. Technol. 6 7408CrossRefGoogle Scholar
  12. 12.
    (a) Xin Zhang C, Liang H-C, Humphreys K J and Karlin K D 2003 In Advances in catalytic activation of dioxygen by metal complexes L I Simándi (Ed.) (Dordrecht: Kluwer Academic Publishers) Ch. 2 p. 79; (b) Simándi L I 2003 In Advances in catalytic activation of dioxygen by metal complexes L I Simándi (Ed.) (Dordrecht: Kluwer Academic Publishers) Ch. 6 p. 265Google Scholar
  13. 13.
    Sharma V B, Jain S L and Sain B 2004 Cobalt(II) Schiff base catalyzed aerobic oxidation of secondary alcohols to ketones J. Mol. Catal. A Chem. 212 55CrossRefGoogle Scholar
  14. 14.
    Sun B, Chen J, Hu J and Li X 2006 Dioxygen affinities and catalytic oxidation activities of cobalt complexes with Schiff bases containing crown ether J. Inorg. Biochem. 100 1308CrossRefGoogle Scholar
  15. 15.
    L Que, M F Reynolds, A Sigel and H Sigel (Eds.) 2000 In Metal ions in biological systems (New York: Marcel Dekker) Vol. 37, p. 505Google Scholar
  16. 16.
    (a) Nishinaga A and Funabiki T (Eds.) 1997 In Oxygenases and model systems (Dordrecht: Kluwer Academic Publishers) p. 157; (b) Wikaira J, Gorun S M, Reedijk J and Bouwman E (Eds.) 1999 In Bioinorganic catalysis (New York: Marcel Dekker) p. 355Google Scholar
  17. 17.
    (a) Funabiki T 1997 In Oxygenases and model systems T Funabiki (Ed.) (Dordrecht: Kluwer Academic Publishers) pp. 105–155; (b) T Funabiki and L I Simándi (Eds.) 2003 In Advances in catalytic activation of dioxygen by metal complexes (Dordrecht: Kluwer Academic Publishers) Ch. 4, p.157; (c) Blower P J, Dilworth J R, Maurer R I, Mullen G D, Reynolds C A and Zheng Y 2001 Towards new transition metal-based hypoxic selective agents for therapy and imaging Inorg. J. Biochem. 85 15Google Scholar
  18. 18.
    (a) Uzunov P and Weiss B 1972 Separation of multiple molecular forms of cyclic adenosine-\(3^\prime \),\(5^\prime \)-monophosphate phosphodiesterase in rat cerebellum by polyacrylamide gel electrophoresis Biochim. Biophys. Acta (BBA) Enzymol. 284 220; (b) Hough E, Hansen L K, Birkens B, Jynge K, Hansen S, Hardvik A, Little C and Dodson Derewenda E Z 1989 High-resolution (1.5 Å) crystal structure of phospholipase C from Bacillus cereus Nature 338 357Google Scholar
  19. 19.
    Jeon Y H, Heo Y-S, Kim C M, Hyun Y-L, Lee T G, Ro S and Cho J M 2005 Phosphodiesterase: Overview of protein structures, potential therapeutic applications and recent progress in drug development Cell. Mol. Life Sci. 62 1198CrossRefGoogle Scholar
  20. 20.
    Hazell A, Mcginley J and Mckenzie C J 1997 Dichlorobis(1,10-phenanthroline-N,N’)cobalt(II)-acetonitrile (1/1.5) Acta Crystallogr. C 53 723CrossRefGoogle Scholar
  21. 21.
    CrystalClear 2.0; Rigaku Corporation: Tokyo, JapanGoogle Scholar
  22. 22.
    Sheldrick G M 2008 A short history of SHELX Acta Crystallorgr. A 64 112Google Scholar
  23. 23.
    Sanyal R, Zhang X, Chakraborty P, Giri S, Chattopadhyay S K, Zhao C and Das D 2016 Role of solvent in the phosphatase activity of a dinuclear nickel(II) complex of a Schiff base ligand: Mechanistic interpretation by DFT studies New J. Chem. 40 7388CrossRefGoogle Scholar
  24. 24.
    (a) Schollhorn R and Burris R H 1967 Biochemistry 57 1317; (b) Dey D, De A, Yadav H R, Guin P S, Roy Choudhury A, Kole N and Biswas B 2016 An oxo-bridged diiron(II) complex as functional model of catechol dioxygenase ChemistrySelect 01 1910Google Scholar
  25. 25.
    Bencini A and Lippolis V 2010 1,10-Phenanthroline: A versatile building block for the construction of ligands for various purposes Coord. Chem. Rev. 254 2096CrossRefGoogle Scholar
  26. 26.
    Sakiyama H 2006 Magnetic susceptibility equation for dinuclear high-spin cobalt(II) complexes considering the exchange interaction between two axially distorted octahedral cobalt(II) ions Inorg. Chim. Acta 359 2097CrossRefGoogle Scholar
  27. 27.
    Kahn O 1993 In Molecular magnetism (New York: VCH Publishers)Google Scholar
  28. 28.
    Ostrovsky S M, Werner R, Brown D A and Haase W 2002 Magnetic properties of dinuclear cobalt complexes Chem. Phys. Lett. 353 290CrossRefGoogle Scholar
  29. 29.
    Goodwin H A 2004 Spin crossover in cobalt(II) systems Top. Curr. Chem. 234 23CrossRefGoogle Scholar
  30. 30.
    Lloret F, Julve M, Cano J, Ruiz-Garcia R and Pardo E 2008 Magnetic properties of six-coordinated high-spin cobalt(II) complexes: Theoretical background and its application Inorg. Chim. Acta 361 3432Google Scholar
  31. 31.
    Sole J G, Bausa L E and Jaque D 2005 In An introduction to the optical spectroscopy of inorganic solids (New York: Wiley)CrossRefGoogle Scholar
  32. 32.
    Kundu S, Roy S, Bhar K, Ghosh R, Lin C -H, Ribas J and Ghosh B K 2013 Synthesis, molecular and crystalline architectures, and properties of a mononuclear complex [\(\text{ Co }^{{\rm II}}(\text{ benzidine })_{2}(\text{ NCS })_{2}(\text{ OH }_{2})_{2}\)] J. Chem. Sci. 125 723CrossRefGoogle Scholar
  33. 33.
    Kappor R, Pathak A, Kapoor P and Venugopalan P 2006 Studies on cobalt(II) complexes with \(N, N, N^\prime \), \(N^\prime \)-tetraethylpyridine-2,6-dicarboxamide(\(\text{ L }^{1})\) containing \(\text{ PF }_{6}^{-}\); \(\text{ BF }_{4}^{-}\); \(\text{ ClO }_{4}^{-}\) and \(\text{ NO }_{3}\)- anions: X-ray crystal structures of [\(\text{ Co }(\text{ L }^{1})_{2}(\text{ CH }_{3}\text{ CN })](\text{ PF }_{6})_{2}\) and [\(\text{ Co }(\text{ L }^{1})_{2}(\text{ H }_{2}\text{ O })_{2}](\text{ X })_{2}\) .\(\text{ H }_{2}\text{ O } (\text{ X } = \text{ PF }_{6}^{-}\), \(\text{ ClO }_{4}^{-})\) Polyhedron 25 31CrossRefGoogle Scholar
  34. 34.
    Handel R, Willms H, Jameson G B, Berry K J, Moubaraki B, Murray K S and Brooker S 2010 Factors influencing the structural and magnetic properties of octahedral cobalt(II) and iron(II) complexes of terdentate N3 schiff base ligands Eur. J. Inorg. Chem. 3317Google Scholar
  35. 35.
    Hendry P and Sargeson A M 1990 A structural and functional model of dinuclear metallophosphatases Inorg. Chem. 29 92CrossRefGoogle Scholar
  36. 36.
    Hendry P and Sargeson A M 1986 Base hydrolysis of coordinated trimethyl phosphate Aust. J. Chem. 39 1177CrossRefGoogle Scholar
  37. 37.
    Benkovic S and Dunikoski L 1971 Unusual rate enhancement in metal ion catalysis of phosphate transfer J. Am. Chem. Soc. 93 1526CrossRefGoogle Scholar
  38. 38.
    Fife T and Pujari M 1988 Divalent metal ion catalysis in the hydrolysis of phosphomonoesters. Hydrolysis of 2-(1,10-phenanthrolyl) phosphate J. Am. Chem. Soc. 110 7790CrossRefGoogle Scholar
  39. 39.
    Williams N H, Takasaki B, Wall M and Chin J 1999 Structure and nuclease activity of simple dinuclear metal complexes: Quantitative dissection of the role of metal ions Acc. Chem. Res. 32 48Google Scholar
  40. 40.
    Zhang Z, Yu X, Fong L K and Margerum L D 2001 Ligand effects on the phosphoesterase activity of Co(II) Schiff base complexes built on PAMAM dendrimers Inorg. Chim. Acta 317 72CrossRefGoogle Scholar
  41. 41.
    Jikido R, Shiraishi H, Matsufuji K, Ohba M, Furutachi H, Suzuki M and Okawa H 2005 Bull. Chem. Soc. Jpn. 78 1795Google Scholar
  42. 42.
    Zhang Z, Xie J-Q, Tang Y, Li J, Li J-Z, Zeng W and Hu C-W 2005 J. Chem. Res. 2 130Google Scholar
  43. 43.
    Arora H, Barman S K, Lloret F, Mukherjee R 2012 Isostructural dinuclear phenoxo-/acetato-bridged manganese(II), cobalt(II), and zinc(II) complexes with labile sites: Kinetics of transesterification of 2-hydroxypropyl-p-nitrophenylphosphate Inorg. Chem. 51 5539CrossRefGoogle Scholar
  44. 44.
    Bazzicalupi C, Bencini A, Berni E, Bianchi A, Fedi V, Fusi V, Giorgi C, Paoletti P and Valtancoli B 1999 Carboxy and diphosphate ester hydrolysis by a dizinc complex with a new alcohol-pendant macrocycle Inorg. Chem. 38 4115CrossRefGoogle Scholar
  45. 45.
    (a) Saki N and Akkaya E U 2004 Bifunctional catalysis of ester hydrolysis: Novel hydrolytic enzyme models based on xanthene framework. J. Mol. Catal. A 219 227; (b) Xia J, Shi Y B, Zhang Y, Miao Q and Tang W X 2003 Deprotonation of zinc(II)-water and zinc(II)-alcohol and nucleophilicity of the resultant zinc(II) hydroxide and zinc(II) alkoxide in double-functionalized complexes: Theoretical studies on models for hydrolytic zinc enzymes Inorg. Chem. 42 70Google Scholar
  46. 46.
    (a) Wilcox D E 1996 Binuclear metallohydrolases Chem. Rev. 96 2435; (b) Sillen L G and Martell A E 1971 In Stability constants of metal-ion complexes Vol. 25 (London: Royal Society of Chemistry)Google Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  • Mamoni Garai
    • 1
  • Dhananjay Dey
    • 1
  • Hare Ram Yadav
    • 2
  • Milan Maji
    • 3
  • Angshuman Roy Choudhury
    • 2
  • Bhaskar Biswas
    • 1
    • 4
  1. 1.Department of ChemistryRaghunathpur CollegePuruliaIndia
  2. 2.Department of Chemical SciencesIndian Institute of Science Education and Research MohaliMohaliIndia
  3. 3.Department of ChemistryNational Institute of TechnologyDurgapurIndia
  4. 4.Department of ChemistryKolkataIndia

Personalised recommendations