Skip to main content
Log in

Copper(II) Schiff base complexes and their mixed thin layers with ZnO nanoparticles

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

A Correction to this article was published on 30 March 2018

This article has been updated

Abstract

Cu(II) complexes with Schiff bases derived from ethylenediamine (en) and 2-pyridinecarboxaldehyde (pyca), 2,5-dimethoxybenzaldehyde (dmbaH) or 4-imidazolecarboxaldehyde (4Him) were obtained and studied by elemental analysis, UV-VIS and IR spectra. Zinc oxide was synthesized using a simple homogeneous precipitation method with zinc acetate as a starting material. Thin layers of the studied Cu(II) complexes were deposited on Si(111) or ZnO/Si(111) substrates by a spin coating method and characterized with a scanning electron microscopy (SEM/EDS), atomic force microscopy (AFM) and fluorescence spectroscopy. For Cu(II) layers the most intensive fluorescence bands due to intra-ligand transitions were observed between 462 and 503 nm. The fluorescence intensity of thin layers was corelated to the rotation speed. In the case of the [Cu(II)(en(4Him)2)Cl2](2a)/ZnO/Si and [Cu(en(dmbaH)2)Cl2](3a)/ZnO/Si layers the quenching of the emission band from ZnO at 440 nm (λ ex = 330 nm) associated with various intrinsic or extrinsic lattice defects was noted.

New copper(II) complexes with Schiff bases obtained from ethylenediamine were structurally and spectroscopically characterized. Thin layers of Cu(II) complexes were deposited on Si(111) or ZnO/Si(111) by a spin coating method. The Cu(II) layers exhibited fluorescence bands between 462 and 503 nm. In the Cu(II)complex/ZnO/Si layers, quenching of the emission band from ZnO at 440 nm (λex=330 nm) was noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Change history

  • 30 March 2018

    The original article has been published with an incomplete “Acknowledgements” section. The complete section should read as follows:

References

  1. Kramer R 1998 Angew. Chem. Int. Ed. 37 772

    Article  CAS  Google Scholar 

  2. Gaggelli E, Kozlowski H, Valensin D and Valensin G 2006 Chem. Rev. 106 1995

    Article  CAS  Google Scholar 

  3. Chetana P R, Srinatha B S, Somashekar M N and Policegoudra R S 2016 J. Mol. Struct. 352 1106

    Google Scholar 

  4. Rama I and Selvameena R 2015 J. Chem. Sci. 127 671

    Article  CAS  Google Scholar 

  5. Naeimi A, Saeednia S, Yoosefian M, Rudbari H A and Nardo V M 2015 J. Chem. Sci. 127 1321

    Article  CAS  Google Scholar 

  6. Lashanizadegan M and Sarkheil M 2012 J. Serb. Chem. Soc. 77 1589

    Article  CAS  Google Scholar 

  7. Amendola V, Fabbrizzi L, Gianelli L, Maggi C and Mangano C 2001 Inorg. Chem. 40 3579

    Article  CAS  Google Scholar 

  8. Chen C H and Shi J 1998 Coord. Chem. Rev. 171 161

    Article  CAS  Google Scholar 

  9. Sanchez C, Rozes L, Ribot F, Laberty-Robert C, Grosso D, Sassoye C, Boissiere C and Nicole C 2010 C. R. Chim. 3 13

    Google Scholar 

  10. Brauer B, Zahn D R T, Ruffer T and Salvan G 2006 Chem. Phys. Lett. 432 226

    Article  Google Scholar 

  11. Ruzgar S and Caglar M 2015 J. Nanoelectr. Optoe. 10 717

    Article  CAS  Google Scholar 

  12. Che C M, Chan S C, Xiang H F, Chan M C W, Liu Y and Wang Y 2004 Chem. Commun. 1484

  13. Chang K H, Huang C C, Liu Y H, Hu Y H, Chou P T and Lin Y C 2004 J. Chem. Soc. Dalton Trans. 1731

  14. Ghosh R, Rahaman S H, Lin C N, Lu T H and Ghosh B K 2006 Polyhedron 25 3104

    Article  CAS  Google Scholar 

  15. Hu Y, Gao X, Di C, Yang X, Zhang F, Liu Y, Li H and Zhu D 2011 Chem. Mater. 23 1204

    Article  CAS  Google Scholar 

  16. Sorar I, Şener M K, Tepehan F Z, Gül A and Koçak M B 2008 Thin Solid Films 516 2894

    Article  CAS  Google Scholar 

  17. Ting-Ting W, He Z. -Q., Xiao-Pan Z, Yong-Sheng W, Chun-Xiu Z and Wen-Guan Z 2007 Optoelectron. Lett. 3 43

    Article  Google Scholar 

  18. Qiu W, Hu W, Liu Y, Zhou S, Yu X. and Zhou D 2001 Sens. Actuators, B 75 62

    Article  CAS  Google Scholar 

  19. Sirimanne P M, Rusop M, Shirata T, Soga T and Jimbo T 2003 Mater. Chem. Phys. 80 461

    Article  CAS  Google Scholar 

  20. Jakob A, Rüffer T, Ecorchard P, Walfort B, Körbitz K, Frühauf S, Schulz S E, Gessner T and Lang H 2010 Z. Anorg. Allg. Chem. 636 1931

    Article  CAS  Google Scholar 

  21. Barwiolek M, Szlyk E, Lis J and Muziol T 2011 Dalton Trans. 40 11012

    Article  CAS  Google Scholar 

  22. Barwiolek M, Szlyk E, Surdykowski A and Wojtczak A 2013 Dalton Trans. 42 11476

    Article  CAS  Google Scholar 

  23. Barwiolek M, Szlyk E, Berg A, Wojtczak A, Muziol T and Jezierska J 2014 Dalton Trans. 43 9924

    Article  CAS  Google Scholar 

  24. Gupta S K, Joshi A and Kaur M 2010 J. Chem. Sci. 122 57

    Article  CAS  Google Scholar 

  25. Lin B, Fu Z and Jia Y 2001 Appl. Phys. Lett. 79 943

    Article  CAS  Google Scholar 

  26. Drmosh Q A, Rao S G, Yamani Z H and Gonda M A 2013 Appl. Surf. Sci. 270 104

    Article  CAS  Google Scholar 

  27. Khanlary M R, Hajinorozi A and Baghshahi S 2015 J. Inorg. Organomet. Polym. 25 1521

    Article  CAS  Google Scholar 

  28. Heredia E, Bojorge C, Casanova J, Cánepa H, Craievich A and Kellermann G 2014 Appl. Surf. Sci. 317 19

    Article  CAS  Google Scholar 

  29. Reddy A J, Kokila M K, Nagabhushana H, Rao J L, Shivakumara C, Nagabhushana B M and Chakradhar R P S 2011 Spectrochim. Acta Part A 81 59

    Article  Google Scholar 

  30. Singh A K, Viswanath V and Janu V C 2009 J. Lumin. 129 874

    Article  CAS  Google Scholar 

  31. Xin M, Hu L Z, Liu D -P and Yu N -S 2014 Superlatt. Microstr. 74 234

    Article  CAS  Google Scholar 

  32. Sharma K P, Kumar M and Pandey A C 2011 J. Nanopart Res. 13 1629

    Article  CAS  Google Scholar 

  33. Chow L, Lupan O, Chai G, Khallaf H, Ono L K, Cuenya B R, Tiginyanu I M, Ursaki V V, Sontea V and Schulte A 2013 Sens. Actuators. A 189 399

    Article  CAS  Google Scholar 

  34. Oliver W C and Pharr G M 1992 J. Mater. Res. 7 1564

    Article  CAS  Google Scholar 

  35. Gullotti M, Pasini A, Fantucci P, Ugo R and Gillard D 1972 Gazz. Chim. Ital. 102 855

    CAS  Google Scholar 

  36. Smith H E, Neergaard J R, Burrows E P and Chen F M 1974 J. Am. Chem. Soc. 96 2908

    Article  CAS  Google Scholar 

  37. Lever A B P 2006 In Inorganic Electronic Spectroscopy (Hoboken: Wiley-Interscience)

  38. Roy S, Choubey S, Bhar K, Khan S, Mitra P and Ghosh B K 2013 J. Mol. Struct. 1051 328

    Article  CAS  Google Scholar 

  39. Rogness D C, Markina N A, Waldo J P and Larock R C 2012 J. Org. Chem. 77 2743

    Article  CAS  Google Scholar 

  40. Ogden M D, Meier G P and Nash K L 2012 J. Solution Chem. 41 1

    Article  CAS  Google Scholar 

  41. Abherve A, Clemente-Juan J M, Coronado M, Boonmak E J and Youngme S 2014 New J. Chem. 38(5) 2105

  42. Khalaji A D, Mighani H, Gholinejad M, Grivani G, Akerdi S, Fejfarova J K and Dusek M 2013 J. Struct. Chem. 54 774

    Article  CAS  Google Scholar 

  43. Günther H 2013 In NMR Spectroscopy Basic Principles, Concepts, and Applications in Chemistry (New York: John Wiley)

  44. Baillie M J, Brown D H, Moss K C and Sharp D W 1968 J. Chem. Soc. A 12 3110

    Article  Google Scholar 

  45. Nakamoto K 2009 In Infrared and Raman Spectra of Inorganic and Coordination Compounds 6 th ed. (New York: John Wiley)

  46. Deacon G B and Phillips R J 1980 Coord. Chem. Rev. 33 227

    Article  CAS  Google Scholar 

  47. Morzyk-Ociepa B and Michalska D 2003 Spectrochim. Acta Part A 59 1247

    Article  Google Scholar 

  48. Cotton F A and Wilkinson G 1988 In Advanced Inorganic Chemistry 5 th ed (New York: John Wiley)

    Google Scholar 

  49. R D Gillard and J A Mc Cleverty (Eds.) 1987 Comprehensive Coordination Chemistry (Oxford: Pergamon) Vol. 2 p.716

  50. Bitenc M, Marinšek M and Orel Z C 2008 J. Eur. Ceram. Soc. 28 2915

    Article  CAS  Google Scholar 

  51. Hsieh C. -H 2007 J. Chin. Chem. Soc. 54 31

    Article  CAS  Google Scholar 

  52. Singh S, Barick K C and Bahadur D 2013 J. Mater. Chem. A 1 3325

    Article  CAS  Google Scholar 

  53. Anžlovar A, Kogej K, Orel C Z and žigon M 2014 Cryst. Growth Des. 14 4262

    Article  Google Scholar 

  54. Jakob A, Rüffer T, Schmidt H, Djiele P, Körbitz K, Ecorchard P, Haase T, Köhse-Hoinghaus K, Frühauf S, Wächtler T, Schulz S, Gessner T and Lang H 2010 Eur. J. Inorg. Chem. 2975

  55. Komino T, Matsuda M and Tajima H 2009 Thin Solid Films 518 688

    Article  CAS  Google Scholar 

  56. Bin W, Li Z, Zuo X, Wu Y, Wang X, Chen Z, He C., Duan W and Gao J 2010 Sens. Actuators, B 149 362

    Article  Google Scholar 

  57. Wang B, Chen Z, Zuo X, Wu Y, He C., Wang X and Li Z 2011 Sens. Actuators, B 160 1

    Article  CAS  Google Scholar 

  58. Wang B, Zhou X, Wu C., He C. and Zuo X 2012 Sens. Actuators, B 161 498

    Article  CAS  Google Scholar 

  59. Babikier M, Wang D, Wang J, Li Q, Sun J, Yan Y, Yu Q and Jiao S 2014 Nanoscale Res. Lett. 9 199

    Article  Google Scholar 

  60. Kundu T K, Karak N, Barik P and Saha S 2011 Int. J. Soft Comput. Eng. (IJSCE) 1 19

    Google Scholar 

  61. Chen S J, Liu Y C, Shao C L, Mu R, Lu Y M, Zhang J Y, Shen D Z and Fan X W 2005 Adv. Mater. 17 586

    Article  CAS  Google Scholar 

  62. Zhang D H, Wang Q P and Xue Z Y 2003 Appl. Surf. Sci. 207 20

    Article  CAS  Google Scholar 

  63. Du G H, Xu F, Yuan Z Y and Tendeloo G V 2006 Appl. Phys. Lett. 88 243101

    Article  Google Scholar 

  64. Park J H, Muralidharan P and Kim D K 2009 Mater. Lett. 63 1019

    Article  CAS  Google Scholar 

  65. Li Y, Xu L, Li X, Shen X and Wang A 2010 Appl. Surf. Sci. 256 4543

    Article  CAS  Google Scholar 

  66. Lakowicz J R 2006 In Principles of Fluorescence Spectroscopy 3 th ed. (New York: Springer)

  67. Chen X -M and Liu G -F 2002 Chem. Eur. J. 8 4811

    Article  CAS  Google Scholar 

  68. Varnes A W, Dadson R B and Wehry E L 1972 J. Am. Chem. Soc. 94 946

    Article  CAS  Google Scholar 

  69. Kemlo J A and Sheperd T M 1977 Chem. Phys. Lett. 47 158

    Article  CAS  Google Scholar 

  70. Hess P 1996 Appl. Surf. Sci. 106 429

    Article  CAS  Google Scholar 

  71. Kim M T 1996 Thin Solid Films 283 13

    Google Scholar 

  72. Chang L and Zhang L C 2009 Acta Mater. 57 2148

    Article  CAS  Google Scholar 

  73. Yoon H-K and Yu Y-S 2005 Int. Symp. on Electronics Materials and Packaging (EMAP) 11–14.12.2005, 2005 169

  74. Korsunsky A M, McGurk M R, Bull S J and Page T F 1998 Surf. Coat. Technol. 99 171

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors would like to thank the National Science Centre (NCN), Poland for financial support (grant no. 2013/09/B/ST5/03509).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MAGDALENA BARWIOLEK.

Additional information

Supplementary Information (SI)

All additional information pertaining to characterization of the ligands using NMR spectroscopy (figures S1–S7), IR spectra of ligands and complexes (figures S8–S18), electronic data (table S18) are given in the supporting information, available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 2.39 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BARWIOLEK, M., SZCZĘSNY, R. & SZŁYK, E. Copper(II) Schiff base complexes and their mixed thin layers with ZnO nanoparticles. J Chem Sci 128, 1057–1066 (2016). https://doi.org/10.1007/s12039-016-1116-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1116-y

Keywords

Navigation