Advertisement

Journal of Chemical Sciences

, Volume 128, Issue 7, pp 1057–1066 | Cite as

Copper(II) Schiff base complexes and their mixed thin layers with ZnO nanoparticles

  • MAGDALENA BARWIOLEK
  • ROBERT SZCZĘSNY
  • EDWARD SZŁYK
Article

Abstract

Cu(II) complexes with Schiff bases derived from ethylenediamine (en) and 2-pyridinecarboxaldehyde (pyca), 2,5-dimethoxybenzaldehyde (dmbaH) or 4-imidazolecarboxaldehyde (4Him) were obtained and studied by elemental analysis, UV-VIS and IR spectra. Zinc oxide was synthesized using a simple homogeneous precipitation method with zinc acetate as a starting material. Thin layers of the studied Cu(II) complexes were deposited on Si(111) or ZnO/Si(111) substrates by a spin coating method and characterized with a scanning electron microscopy (SEM/EDS), atomic force microscopy (AFM) and fluorescence spectroscopy. For Cu(II) layers the most intensive fluorescence bands due to intra-ligand transitions were observed between 462 and 503 nm. The fluorescence intensity of thin layers was corelated to the rotation speed. In the case of the [Cu(II)(en(4Him)2)Cl2](2a)/ZnO/Si and [Cu(en(dmbaH)2)Cl2](3a)/ZnO/Si layers the quenching of the emission band from ZnO at 440 nm (λ ex = 330 nm) associated with various intrinsic or extrinsic lattice defects was noted.

Graphical Abstract

New copper(II) complexes with Schiff bases obtained from ethylenediamine were structurally and spectroscopically characterized. Thin layers of Cu(II) complexes were deposited on Si(111) or ZnO/Si(111) by a spin coating method. The Cu(II) layers exhibited fluorescence bands between 462 and 503 nm. In the Cu(II)complex/ZnO/Si layers, quenching of the emission band from ZnO at 440 nm (λex=330 nm) was noted.

Keywords

Thin layer ZnO nanoparticles copper complexes AFM SEM fluorescence 

Notes

Acknowledgement

Authors would like to thank the National Science Centre (NCN), Poland for financial support (grant no. 2013/09/B/ST5/03509).

Supplementary material

12039_2016_1116_MOESM1_ESM.doc (2.4 mb)
(DOC 2.39 MB)

References

  1. 1.
    Kramer R 1998 Angew. Chem. Int. Ed. 37 772CrossRefGoogle Scholar
  2. 2.
    Gaggelli E, Kozlowski H, Valensin D and Valensin G 2006 Chem. Rev. 106 1995CrossRefGoogle Scholar
  3. 3.
    Chetana P R, Srinatha B S, Somashekar M N and Policegoudra R S 2016 J. Mol. Struct. 352 1106Google Scholar
  4. 4.
    Rama I and Selvameena R 2015 J. Chem. Sci. 127 671CrossRefGoogle Scholar
  5. 5.
    Naeimi A, Saeednia S, Yoosefian M, Rudbari H A and Nardo V M 2015 J. Chem. Sci. 127 1321CrossRefGoogle Scholar
  6. 6.
    Lashanizadegan M and Sarkheil M 2012 J. Serb. Chem. Soc. 77 1589CrossRefGoogle Scholar
  7. 7.
    Amendola V, Fabbrizzi L, Gianelli L, Maggi C and Mangano C 2001 Inorg. Chem. 40 3579CrossRefGoogle Scholar
  8. 8.
    Chen C H and Shi J 1998 Coord. Chem. Rev. 171 161CrossRefGoogle Scholar
  9. 9.
    Sanchez C, Rozes L, Ribot F, Laberty-Robert C, Grosso D, Sassoye C, Boissiere C and Nicole C 2010 C. R. Chim. 3 13Google Scholar
  10. 10.
    Brauer B, Zahn D R T, Ruffer T and Salvan G 2006 Chem. Phys. Lett. 432 226CrossRefGoogle Scholar
  11. 11.
    Ruzgar S and Caglar M 2015 J. Nanoelectr. Optoe. 10 717CrossRefGoogle Scholar
  12. 12.
    Che C M, Chan S C, Xiang H F, Chan M C W, Liu Y and Wang Y 2004 Chem. Commun. 1484Google Scholar
  13. 13.
    Chang K H, Huang C C, Liu Y H, Hu Y H, Chou P T and Lin Y C 2004 J. Chem. Soc. Dalton Trans. 1731Google Scholar
  14. 14.
    Ghosh R, Rahaman S H, Lin C N, Lu T H and Ghosh B K 2006 Polyhedron 25 3104CrossRefGoogle Scholar
  15. 15.
    Hu Y, Gao X, Di C, Yang X, Zhang F, Liu Y, Li H and Zhu D 2011 Chem. Mater. 23 1204CrossRefGoogle Scholar
  16. 16.
    Sorar I, Şener M K, Tepehan F Z, Gül A and Koçak M B 2008 Thin Solid Films 516 2894CrossRefGoogle Scholar
  17. 17.
    Ting-Ting W, He Z. -Q., Xiao-Pan Z, Yong-Sheng W, Chun-Xiu Z and Wen-Guan Z 2007 Optoelectron. Lett. 3 43CrossRefGoogle Scholar
  18. 18.
    Qiu W, Hu W, Liu Y, Zhou S, Yu X. and Zhou D 2001 Sens. Actuators, B 75 62CrossRefGoogle Scholar
  19. 19.
    Sirimanne P M, Rusop M, Shirata T, Soga T and Jimbo T 2003 Mater. Chem. Phys. 80 461CrossRefGoogle Scholar
  20. 20.
    Jakob A, Rüffer T, Ecorchard P, Walfort B, Körbitz K, Frühauf S, Schulz S E, Gessner T and Lang H 2010 Z. Anorg. Allg. Chem. 636 1931CrossRefGoogle Scholar
  21. 21.
    Barwiolek M, Szlyk E, Lis J and Muziol T 2011 Dalton Trans. 40 11012CrossRefGoogle Scholar
  22. 22.
    Barwiolek M, Szlyk E, Surdykowski A and Wojtczak A 2013 Dalton Trans. 42 11476CrossRefGoogle Scholar
  23. 23.
    Barwiolek M, Szlyk E, Berg A, Wojtczak A, Muziol T and Jezierska J 2014 Dalton Trans. 43 9924CrossRefGoogle Scholar
  24. 24.
    Gupta S K, Joshi A and Kaur M 2010 J. Chem. Sci. 122 57CrossRefGoogle Scholar
  25. 25.
    Lin B, Fu Z and Jia Y 2001 Appl. Phys. Lett. 79 943CrossRefGoogle Scholar
  26. 26.
    Drmosh Q A, Rao S G, Yamani Z H and Gonda M A 2013 Appl. Surf. Sci. 270 104CrossRefGoogle Scholar
  27. 27.
    Khanlary M R, Hajinorozi A and Baghshahi S 2015 J. Inorg. Organomet. Polym. 25 1521CrossRefGoogle Scholar
  28. 28.
    Heredia E, Bojorge C, Casanova J, Cánepa H, Craievich A and Kellermann G 2014 Appl. Surf. Sci. 317 19CrossRefGoogle Scholar
  29. 29.
    Reddy A J, Kokila M K, Nagabhushana H, Rao J L, Shivakumara C, Nagabhushana B M and Chakradhar R P S 2011 Spectrochim. Acta Part A 81 59CrossRefGoogle Scholar
  30. 30.
    Singh A K, Viswanath V and Janu V C 2009 J. Lumin. 129 874CrossRefGoogle Scholar
  31. 31.
    Xin M, Hu L Z, Liu D -P and Yu N -S 2014 Superlatt. Microstr. 74 234CrossRefGoogle Scholar
  32. 32.
    Sharma K P, Kumar M and Pandey A C 2011 J. Nanopart Res. 13 1629CrossRefGoogle Scholar
  33. 33.
    Chow L, Lupan O, Chai G, Khallaf H, Ono L K, Cuenya B R, Tiginyanu I M, Ursaki V V, Sontea V and Schulte A 2013 Sens. Actuators. A 189 399CrossRefGoogle Scholar
  34. 34.
    Oliver W C and Pharr G M 1992 J. Mater. Res. 7 1564CrossRefGoogle Scholar
  35. 35.
    Gullotti M, Pasini A, Fantucci P, Ugo R and Gillard D 1972 Gazz. Chim. Ital. 102 855Google Scholar
  36. 36.
    Smith H E, Neergaard J R, Burrows E P and Chen F M 1974 J. Am. Chem. Soc. 96 2908CrossRefGoogle Scholar
  37. 37.
    Lever A B P 2006 In Inorganic Electronic Spectroscopy (Hoboken: Wiley-Interscience)Google Scholar
  38. 38.
    Roy S, Choubey S, Bhar K, Khan S, Mitra P and Ghosh B K 2013 J. Mol. Struct. 1051 328CrossRefGoogle Scholar
  39. 39.
    Rogness D C, Markina N A, Waldo J P and Larock R C 2012 J. Org. Chem. 77 2743CrossRefGoogle Scholar
  40. 40.
    Ogden M D, Meier G P and Nash K L 2012 J. Solution Chem. 41 1CrossRefGoogle Scholar
  41. 41.
    Abherve A, Clemente-Juan J M, Coronado M, Boonmak E J and Youngme S 2014 New J. Chem. 38(5) 2105Google Scholar
  42. 42.
    Khalaji A D, Mighani H, Gholinejad M, Grivani G, Akerdi S, Fejfarova J K and Dusek M 2013 J. Struct. Chem. 54 774CrossRefGoogle Scholar
  43. 43.
    Günther H 2013 In NMR Spectroscopy Basic Principles, Concepts, and Applications in Chemistry (New York: John Wiley)Google Scholar
  44. 44.
    Baillie M J, Brown D H, Moss K C and Sharp D W 1968 J. Chem. Soc. A 12 3110CrossRefGoogle Scholar
  45. 45.
    Nakamoto K 2009 In Infrared and Raman Spectra of Inorganic and Coordination Compounds 6 th ed. (New York: John Wiley)Google Scholar
  46. 46.
    Deacon G B and Phillips R J 1980 Coord. Chem. Rev. 33 227CrossRefGoogle Scholar
  47. 47.
    Morzyk-Ociepa B and Michalska D 2003 Spectrochim. Acta Part A 59 1247CrossRefGoogle Scholar
  48. 48.
    Cotton F A and Wilkinson G 1988 In Advanced Inorganic Chemistry 5 th ed (New York: John Wiley)Google Scholar
  49. 49.
    R D Gillard and J A Mc Cleverty (Eds.) 1987 Comprehensive Coordination Chemistry (Oxford: Pergamon) Vol. 2 p.716Google Scholar
  50. 50.
    Bitenc M, Marinšek M and Orel Z C 2008 J. Eur. Ceram. Soc. 28 2915CrossRefGoogle Scholar
  51. 51.
    Hsieh C. -H 2007 J. Chin. Chem. Soc. 54 31CrossRefGoogle Scholar
  52. 52.
    Singh S, Barick K C and Bahadur D 2013 J. Mater. Chem. A 1 3325CrossRefGoogle Scholar
  53. 53.
    Anžlovar A, Kogej K, Orel C Z and žigon M 2014 Cryst. Growth Des. 14 4262CrossRefGoogle Scholar
  54. 54.
    Jakob A, Rüffer T, Schmidt H, Djiele P, Körbitz K, Ecorchard P, Haase T, Köhse-Hoinghaus K, Frühauf S, Wächtler T, Schulz S, Gessner T and Lang H 2010 Eur. J. Inorg. Chem. 2975Google Scholar
  55. 55.
    Komino T, Matsuda M and Tajima H 2009 Thin Solid Films 518 688CrossRefGoogle Scholar
  56. 56.
    Bin W, Li Z, Zuo X, Wu Y, Wang X, Chen Z, He C., Duan W and Gao J 2010 Sens. Actuators, B 149 362CrossRefGoogle Scholar
  57. 57.
    Wang B, Chen Z, Zuo X, Wu Y, He C., Wang X and Li Z 2011 Sens. Actuators, B 160 1CrossRefGoogle Scholar
  58. 58.
    Wang B, Zhou X, Wu C., He C. and Zuo X 2012 Sens. Actuators, B 161 498CrossRefGoogle Scholar
  59. 59.
    Babikier M, Wang D, Wang J, Li Q, Sun J, Yan Y, Yu Q and Jiao S 2014 Nanoscale Res. Lett. 9 199CrossRefGoogle Scholar
  60. 60.
    Kundu T K, Karak N, Barik P and Saha S 2011 Int. J. Soft Comput. Eng. (IJSCE) 1 19Google Scholar
  61. 61.
    Chen S J, Liu Y C, Shao C L, Mu R, Lu Y M, Zhang J Y, Shen D Z and Fan X W 2005 Adv. Mater. 17 586CrossRefGoogle Scholar
  62. 62.
    Zhang D H, Wang Q P and Xue Z Y 2003 Appl. Surf. Sci. 207 20CrossRefGoogle Scholar
  63. 63.
    Du G H, Xu F, Yuan Z Y and Tendeloo G V 2006 Appl. Phys. Lett. 88 243101CrossRefGoogle Scholar
  64. 64.
    Park J H, Muralidharan P and Kim D K 2009 Mater. Lett. 63 1019CrossRefGoogle Scholar
  65. 65.
    Li Y, Xu L, Li X, Shen X and Wang A 2010 Appl. Surf. Sci. 256 4543CrossRefGoogle Scholar
  66. 66.
    Lakowicz J R 2006 In Principles of Fluorescence Spectroscopy 3 th ed. (New York: Springer)Google Scholar
  67. 67.
    Chen X -M and Liu G -F 2002 Chem. Eur. J. 8 4811CrossRefGoogle Scholar
  68. 68.
    Varnes A W, Dadson R B and Wehry E L 1972 J. Am. Chem. Soc. 94 946CrossRefGoogle Scholar
  69. 69.
    Kemlo J A and Sheperd T M 1977 Chem. Phys. Lett. 47 158CrossRefGoogle Scholar
  70. 70.
    Hess P 1996 Appl. Surf. Sci. 106 429CrossRefGoogle Scholar
  71. 71.
    Kim M T 1996 Thin Solid Films 283 13Google Scholar
  72. 72.
    Chang L and Zhang L C 2009 Acta Mater. 57 2148CrossRefGoogle Scholar
  73. 73.
    Yoon H-K and Yu Y-S 2005 Int. Symp. on Electronics Materials and Packaging (EMAP) 11–14.12.2005, 2005 169Google Scholar
  74. 74.
    Korsunsky A M, McGurk M R, Bull S J and Page T F 1998 Surf. Coat. Technol. 99 171CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2016

Authors and Affiliations

  • MAGDALENA BARWIOLEK
    • 1
  • ROBERT SZCZĘSNY
    • 1
  • EDWARD SZŁYK
    • 1
  1. 1.Faculty of ChemistryNicolaus Copernicus University in TorunTorunPoland

Personalised recommendations