Target-specific gene delivery in plant systems and their expression: Insights into recent developments

Abstract

In order to improve crop plants in terms of their yield, drought resistance, pest resistance, nutritional value, etc., modern agriculture has relied upon plant genetic engineering. Since the advent of recombinant DNA technology, several tools have been used for genetic transformations in plants such as Agrobacterium tumefaciens, virus-mediated gene transfer, direct gene transfer systems such as electroporation, particle gun, microinjection and chemical methods. All these traditional methods lack specificity and the transgenes are integrated at random sites in the plant DNA. Recently novel techniques for gene targeting have evolved such as engineered nucleases such as Zinc Finger Nucleases, Transcription Activator like effector nucleases, Clustered regular interspaced short palindromic repeats. Other advances include improvement in tools for delivery of gene editing components which include carrier proteins, and carbon nanotubes. The present review focuses on the latest techniques for target specific gene delivery in plants, their expression and future directions in plant biotechnology.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

References

  1. Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA and Voytas DF 2014 DNA replicons for plant genome engineering. Plant Cell 26 151–163

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Barrangou R 2015 Diversity of CRISPR-Cas immune systems and molecular machines. Genome Biol. 16 247

    PubMed  PubMed Central  Google Scholar 

  3. Barrangou R 2015 The roles of CRISPR-Cas systems in adaptive immunity and beyond. Curr. Opin. Immunol. 32 36–41

    CAS  PubMed  Google Scholar 

  4. Bevan MW, Flavell RB and Chilton MD 1992 A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Biotechnology 24 367–370

    CAS  PubMed  Google Scholar 

  5. Black RE, Allen LH, Bhutta ZA, Caulfield LE, de Onis M, Ezzati M, Mathers C and Rivera J, Maternal, Child Undernutrition Study G 2008 Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371 243–260

    Google Scholar 

  6. Blackburn PR, Campbell JM, Clark KJ and Ekker SC 2013 The CRISPR system–keeping zebrafish gene targeting fresh. Zebrafish 10 116–118

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A and Bonas U 2009 Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326 1509–1512

    CAS  PubMed  Google Scholar 

  8. Bogdanove AJ, Schornack S and Lahaye T 2010 TAL effectors: finding plant genes for disease and defense. Curr. Opin. Plant Biol. 13 394–401

    CAS  PubMed  Google Scholar 

  9. Bonawitz ND, Ainley WM, Itaya A, Chennareddy SR, Cicak T, Effinger K, Jiang K, Mall TK, Marri PR and Samuel JP 2019 Zinc finger nuclease-mediated targeting of multiple transgenes to an endogenous soybean genomic locus via non-homologous end joining. Plant Biotechnol. J. 17 750–761

    CAS  PubMed  Google Scholar 

  10. Carroll D. 2008 Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene. Ther. 15 1463–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chandler SF and Sanchez C 2012 Genetic modification; the development of transgenic ornamental plant varieties. Plant Biotechnol. J. 10 891–903

    PubMed  Google Scholar 

  12. Char SN, Neelakandan AK, Nahampun H, Frame B, Main M, Spalding MH, Becraft PW, Meyers BC, Walbot V and Wang K 2017 An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol. J. 15 257–268

    CAS  PubMed  Google Scholar 

  13. Chen CP, Chou JC, Liu BR, Chang M and Lee HJ 2007 Transfection and expression of plasmid DNA in plant cells by an arginine-rich intracellular delivery peptide without protoplast preparation. FEBS Lett. 581 1891–1897

    CAS  PubMed  Google Scholar 

  14. Chen IP, Mannuss A, Orel N, Heitzeberg F and Puchta H 2008 A homolog of ScRAD5 is involved in DNA repair and homologous recombination in Arabidopsis. Plant Physiol. 146 1786–1796

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chilcoat D, Liu ZB and Sander J 2017 Use of CRISPR/Cas9 for crop improvement in maize and soybean. Prog. Mol. Biol. Transl. Sci. 149 27–46

    CAS  PubMed  Google Scholar 

  16. Chuah JA, Horii Y and Numata K 2016 Peptide-derived method to transport genes and proteins across cellular and organellar barriers in plants. J. Vis. Exp. 118 54972

    Google Scholar 

  17. Chuah JA and Numata K 2018 Stimulus-responsive peptide for effective delivery and release of DNA in plants. Biomacromolecules 19 1154–1163

    CAS  PubMed  Google Scholar 

  18. Chuah JA, Yoshizumi T, Kodama Y and Numata K 2015 Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers. Sci. Rep. 5 7751

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chugh A and Eudes F 2008 Study of uptake of cell penetrating peptides and their cargoes in permeabilized wheat immature embryos. FEBS. J. 275 2403–2414

    CAS  PubMed  Google Scholar 

  20. Curtin SJ, Zhang F, Sander JD, Haun WJ, Starker C, Baltes NJ, Reyon D, Dahlborg EJ, Goodwin MJ and Coffman AP 2011 Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol. 156 466–473

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Daniell H, Datta R, Varma S, Gray S, Lee S-B. 1998. Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol. 16 345–348

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Day A, Madesis P. 2007 DNA replication, recombination, and repair in plastids. In: Bock R, editor. Cell and molecular biology of plastids. Berlin Heidelberg: Springer. 65–119.

    Google Scholar 

  23. Demirer GS, Zhang H, Matos JL, Goh NS, Cunningham FJ, Sung Y, Chang R, Aditham AJ, Chio L and Cho MJ 2019 High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 14 456–464

    CAS  PubMed  Google Scholar 

  24. Douglas AE 2018 Strategies for enhanced crop resistance to insect pests. Annu. Rev. Plant. Biol. 69 637–660

    CAS  PubMed  Google Scholar 

  25. Durai S, Mani M, Kandavelou K, Wu J, Porteus MH and Chandrasegaran S 2005 Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. 33 5978–5990

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Endo A, Masafumi M, Kaya H and Toki S 2016 Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci. Rep. 6 38169

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Forsyth A, Weeks T, Richael C and Duan H 2016 Transcription activator-like effector nucleases (TALEN)-mediated targeted DNA insertion in potato plants. Front Plant. Sci. 7 1572

    PubMed  PubMed Central  Google Scholar 

  28. Francis KE and Spiker S 2005 Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations. Plant J. 41 464–477

    CAS  PubMed  Google Scholar 

  29. Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F and Brew JA 2014 Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13 400–408

    CAS  PubMed  Google Scholar 

  30. Golestanipour A, Nikkhah M, Aalami A and Hosseinkhani S 2018 Gene delivery to tobacco root cells with single-walled carbon nanotubes and cell-penetrating fusogenic peptides. Mol. Biotechnol. 60 863–878

    CAS  PubMed  Google Scholar 

  31. Hanin M and Paszkowski J 2003 Plant genome modification by homologous recombination. Curr. Opin. Plant Biol. 6 157–162

    CAS  PubMed  Google Scholar 

  32. Iida S and Terada R 2005 Modification of endogenous natural genes by gene targeting in rice and other higher plants. Plant Mol. Biol. 59 205–219

    CAS  PubMed  Google Scholar 

  33. Iijima S 1991 Helical microtubules of graphitic carbon. Nature 354 56–58

    CAS  Google Scholar 

  34. Ji X, Zhang H, Zhang Y, Wang Y and Gao C 2015 Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat. Plants 1 15144

    CAS  PubMed  Google Scholar 

  35. Jia H, Orbovic V and Wang N 2019 CRISPR-LbCas12a-mediated modification of citrus. Plant Biotechnol. J. 17 1928–1937

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337 816–821

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Joung JK and Sander JD 2013 TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol. Cell. Biol. 14 49–55

    CAS  PubMed  Google Scholar 

  38. Kim H, Kim ST, Ryu J, Kang BC, Kim JS and Kim SG 2017 CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat. Commun. 8 14406

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim SI, Veena and Gelvin SB 2007 Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J. 51 779–791

    CAS  PubMed  Google Scholar 

  40. Kim YG, Cha J and Chandrasegaran S 1996 Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 93 1156–1160

    CAS  PubMed  Google Scholar 

  41. Kohli A, Twyman RM, Abranches R, Wegel E, Stoger E and Christou P 2003 Transgene integration, organization and interaction in plants. Plant Mol. Biol. 52 247–258

    CAS  PubMed  Google Scholar 

  42. Kwak SY, Lew TTS, Sweeney CJ, Koman VB, Wong MH, Bohmert-Tatarev K, Snell KD, Seo JS, Chua NH and Strano MS 2019 Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 14 447–455

    CAS  PubMed  Google Scholar 

  43. Laere E, Ling AP, Wong YP, Koh RY, Lila MA and Hussein S 2016 Plant-based vaccines: production and challenges. J. Bot. 2016: 4928637

    Google Scholar 

  44. Liu P, Wang Y, Ulrich RG, Simmons CW, Gheynst JS, Gallo RL, Huang C 2018 Leaf-Encapsulated vaccines:agroinfiltration and transient expression of the antigen staphylococcal endotoxin B in radish leaves. J. Immunol. Res. 2018: 3710961

    PubMed  PubMed Central  Google Scholar 

  45. Lakshmanan M, Kodama Y, Yoshizumi T, Sudesh K and Numata K 2013 Rapid and efficient gene delivery into plant cells using designed peptide carriers. Biomacromolecules 14 10–16

    CAS  PubMed  Google Scholar 

  46. Lemaux PG 2008 Genetically engineered plants and foods: a scientist’s analysis of the issues, part I. Annu. Rev. Plant Biol. 59 771–812

    CAS  PubMed  Google Scholar 

  47. Li J, Stoddard TJ, Demorest ZL, Lavoie PO, Luo S, Clasen BM, Cedrone F, Ray EE, Coffman AP and Daulhac A 2016 Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco-engineering and monoclonal antibody production. Plant Biotechnol. J. 14 533–542

    CAS  PubMed  Google Scholar 

  48. Li T, Liu B, Spalding MH, Weeks DP and Yang B 2012 High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 30 390–392

    CAS  PubMed  Google Scholar 

  49. Li Z, Liu ZB, Xing A, Moon BP, Koellhoffer JP, Huang L, Ward RT, Clifton E, Falco SC and Cigan AM 2015 Cas9-guide RNA directed genome editing in soybean. Plant Physiol. 169 960–970

    PubMed  PubMed Central  Google Scholar 

  50. Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J and Fang X 2009. Carbon nanotubes as molecular transporters for walled plant cells. Nano. Lett. 9 1007–1010

    CAS  PubMed  Google Scholar 

  51. Liu Q, Segal DJ, Ghiara JB and Barbas CF 1997 Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc. Natl. Acad. Sci. USA 94 5525–5530

    CAS  PubMed  Google Scholar 

  52. Lloyd A, Plaisier CL, Carroll D and Drews GN 2005 Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc. Natl. Acad. Sci. USA 102 2232–2237

    CAS  PubMed  Google Scholar 

  53. Malzahn AA, Tang X, Lee K, Ren Q, Sretenovic S, Zhang Y, Chen H, Kang M, Bao Y and Zheng X 2019 Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biol. 17 9

    PubMed  PubMed Central  Google Scholar 

  54. Miralles P, Johnson E, Church TL and Harris AT 2012 Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J. R. Soc. Interface. 9 3514–3527

    CAS  PubMed  PubMed Central  Google Scholar 

  55. McBride K.E, Svab Z, Schaaf DJ, Hogan PS, Stalker DM, Maliga P. 1995 Amplification of a chimeric bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio/Technology 13 362–365

    CAS  Google Scholar 

  56. Mojica FJM and Montoliu L 2016 On the origin of CRISPR-Cas technology: from prokaryotes to mammals. Trends Microbiol. 24 811–820

    CAS  PubMed  Google Scholar 

  57. Moscou MJ and Bogdanove AJ 2009 A simple cipher governs DNA recognition by TAL effectors. Science 326 1501

    CAS  PubMed  Google Scholar 

  58. Novak S 2019 Plant biotechnology applications of zinc finger technology. Methods. Mol. Biol. 1864 295–310

    CAS  PubMed  Google Scholar 

  59. Norkunas K, Harding R, Dale J and Dugdale B 2018 Improving agrofiltration-based transient gene expression in Nicotiana benthamiana. Plant Methods 14:71

    PubMed  PubMed Central  Google Scholar 

  60. Numata K, Ohtani M, Yoshizumi T, Demura T and Kodama Y 2014 Local gene silencing in plants via synthetic dsRNA and carrier peptide. Plant Biotechnol. J. 12 1027–1034

    CAS  PubMed  Google Scholar 

  61. Ochoa-Olmos O, Dominguez J and Contreras-Torres F 2016 Transformation of plant cell suspension cultures with amine-functionalized multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 16 7461–7471

    CAS  Google Scholar 

  62. Osakabe K, Osakabe Y and Toki S 2010 Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc. Natl. Acad. Sci. USA 107 12034–12039

    CAS  PubMed  Google Scholar 

  63. Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL and Silverstone AL 2005 Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat. Biotechnol. 23 482–487

    CAS  PubMed  Google Scholar 

  64. Paszkowski J, Baur M, Bogucki A and Potrykus I 1988 Gene targeting in plants. EMBO J 7 4021–4026

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Peach C and Velten J 1991 Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol. Biol. 17 49–60

    CAS  PubMed  Google Scholar 

  66. Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L and Zou X 2017 Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol. J. 15 1509–1519

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Puchta H 2005 The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J. Exp. Bot. 56 1–14

    CAS  PubMed  Google Scholar 

  68. Puchta H, Dujon B and Hohn B 1996 Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc. Natl. Acad. Sci. USA 93 5055–5060

    CAS  PubMed  Google Scholar 

  69. Puchta H 1998 Repair of genomic double stranded breaks in somatic plant cells by one-sided invasion of homologous sequences. Plant J. 13, 331–339

    CAS  Google Scholar 

  70. Ramirez CL, Certo MT, Mussolino C, Goodwin MJ, Cradick TJ, McCaffrey AP, Cathomen T, Scharenberg AM and Joung JK 2012 Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res. 40 5560–5568

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ran Y, Patron N, Kay P, Wong D, Buchanan M, Cao YY, Sawbridge T, Davies JP, Mason J and Webb SR 2018 Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticum aestivum) using a DNA repair template. Plant Biotechnol. J. 16 2088–2101

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Reiss B, Schubert I, Kopchen K, Wendeler E, Schell J and Puchta H 2000 RecA stimulates sister chromatid exchange and the fidelity of double-strand break repair, but not gene targeting, in plants transformed by Agrobacterium. Proc. Natl. Acad. Sci. USA 97 3358–3363

    CAS  PubMed  Google Scholar 

  73. Romer P, Recht S, Strauss T, Elsaesser J, Schornack S, Boch J, Wang S and Lahaye T 2010 Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. New Phytol 187 1048–1057

    PubMed  Google Scholar 

  74. Salomon S and Puchta H 1998 Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J. 17 6086–6095

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Shan Q, Zhang Y, Chen K, Zhang K and Gao C 2015 Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol. J. 13 791–800

    CAS  PubMed  Google Scholar 

  76. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S and Meng X 2009 Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459 437–441

    CAS  PubMed  Google Scholar 

  77. Svitashev S, Schwartz C, Lenderts B, Young JK and Mark Cigan A 2016 Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat. Commun. 7 13274

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Svitashev S, Young JK, Schwartz C, Gao H, Falco SC and Cigan AM 2015 Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 169 931–945

    PubMed  PubMed Central  Google Scholar 

  79. Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q and Li Q 2017 A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat. Plants 3 17103

    PubMed  Google Scholar 

  80. Tashkandi M, Ali Z, Aljedaani F, Shami A and Mahfouz MM 2018 Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signal Behav. 13 e1525996

    PubMed  PubMed Central  Google Scholar 

  81. Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK and Voytas DF 2009 High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459 442–445

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Tripathi S, Sonkar SK and Sarkar S 2011 Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3 1176–1181

    CAS  PubMed  Google Scholar 

  83. Tzfira T and White C 2005 Towards targeted mutagenesis and gene replacement in plants. Trends Biotechnol. 23 567–569

    CAS  PubMed  Google Scholar 

  84. Voytas D 2013 Plant genome engineering with sequence-specific nucleases. Annu. Rev. Plant. Biol. 64 327–350

    CAS  PubMed  Google Scholar 

  85. Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu YG and Zhao K 2016a Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 11 e0154027

    PubMed  PubMed Central  Google Scholar 

  86. Wang L, Li F, Dang L, Liang C, Wang C, He B, Liu J, Li D, Wu X, Xu X, Lu A and Zhang G 2016b In vivo delivery systems for therapeutic genome editing. Int. J. Mol. Sci. 17 626

    PubMed Central  Google Scholar 

  87. Won Y-W, Lim K S and Kim, Y-H 2011 Intracellular organelle-targeted non-viral gene delivery systems. J. Control. Release 152 99–109

    CAS  PubMed  Google Scholar 

  88. Xu R, Qin R, Li H, Li D, Li L, Wei P and Yang J 2017 Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol. J. 15 713–717

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Xu R, Yang Y, Qin R, Li H, Qiu C, Li L, Wei P and Yang J 2016 Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. J. Genet. Genomics 43 529–532

    PubMed  Google Scholar 

  90. Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P and Potrykus I 2000 Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287 303–305

    CAS  PubMed  Google Scholar 

  91. Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D and Peterson T 2010 High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc. Natl. Acad. Sci. USA 107 12028–12033

    CAS  PubMed  Google Scholar 

  92. Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ and Voytas DF 2013 Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol. 161 20–27

    CAS  PubMed  Google Scholar 

  93. Ziemienowicz A, Shim YS, Matsuoka A, Eudes F and Kovalchuk I 2012 A novel method of transgene delivery into triticale plants using the Agrobacterium transferred DNA-derived nano-complex. Plant Physiol. 158 1503–1513

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arup Kumar Mitra.

Additional information

Corresponding editor: Manchikatla Venkat Rajam

Communicated by MANCHIKATLA VENKAT RAJAM

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nandy, D., Maity, A. & Mitra, A.K. Target-specific gene delivery in plant systems and their expression: Insights into recent developments. J Biosci 45, 30 (2020). https://doi.org/10.1007/s12038-020-0008-y

Download citation

Keywords

  • Plant genetic engineering
  • targeted gene delivery
  • ZFN
  • TALEN
  • CRISPR
  • carrier protein
  • carbon nanotubes