Choline–betaine pathway contributes to hyperosmotic stress and subsequent lethal stress resistance in Pseudomonas protegens SN15-2

Abstract

Pseudomonas protegens SN15-2, a typical non-spore-forming rhizosphere bacterium, has excellent biocontrol capabilities; thus, it is necessary to explore the stress resistance of SN15-2. The choline–glycine betaine pathway is considered as an important mechanism by which bacteria adapt to stressful environments. In this work, we demonstrated that the expression of the betA and betB genes, which are involved in the choline–glycine betaine pathway in SN15-2, was highly increased by 12-fold and 26-fold, respectively, by hyperosmotic stress and choline treatment. The accumulation of betaine in SN15-2 (5.54 g/L) was significantly higher than that in the mutants Δ betA (3.44 g/L) and Δ betB (2.68 g/L) under hyperosmotic stress and choline treatment. Moreover, choline enhanced the growth of SN15-2 greatly, but it did not enhance the growth of Δ betB under hyperosmotic stress. Choline combined with hyperosmotic adaptation significantly increased the lethal stress resistance of SN15-2 while the resistance of Δ betA and Δ betB was significantly decreased. This research illuminated a strategy underlying the adaptation to osmotic stress in P. protegens and provided an effective method to improve the stress resistance of this species, thus provided a theoretical basis for the practical application of P. protegens SN15-2.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Anderson WA, Hedges ND, Jones MV and Cole MB 1991 Thermal inactivation of Listeria monocytogenes studied by differential scanning calorimetry. J. Gen. Microbiol.137 1419–1424

    CAS  Article  Google Scholar 

  2. Barbosa J, Borges S and Teixeira P 2015 Influence of sub-lethal stresses on the survival of lactic acid bacteria after spray-drying in orange juice. Food Microbiol.52 77–83

    CAS  Article  Google Scholar 

  3. Beattie GA, Chen C, Nielsen L and Freeman BC 2016 Interstrain variation in the physiological and transcriptional responses of Pseudomonas syringae to osmotic stress; in Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria (eds) J Frans and D Bruijn (John Wiley & Sons, Inc) pp 647–656

  4. Biryukova EN, Medentsev AG, Arinbasarova AY and Akimenko VK 2007 Adaptation of the yeast Yarrowia lipolyticato to heat shock. Microbiology76 158–163

    CAS  Article  Google Scholar 

  5. Boch J, Kempf B and Bremer E 1994 Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline. J. Bacteriol.176 5364–5371

    CAS  Article  Google Scholar 

  6. Cabrefiga J, Francés J, Montesinos E and Bonaterra A 2014 Improvement of a dry formulation of Pseudomonas fluorescens EPS62e for fire blight disease biocontrol by combination of culture osmoadaptation with a freeze-drying lyoprotectant. J. Appl. Microbiol.117 1122–1131

    CAS  Article  Google Scholar 

  7. Chen C and Beattie GA 2007 Characterization of the osmoprotectant transporter OpuC from Pseudomonas syringae and demonstration that cystathionine-beta-synthase domains are required for its osmoregulatory function. J. Bacteriol.189 6901–6912

    CAS  Article  Google Scholar 

  8. Chen J, Wang X, Tang D and Wang W 2019 Oxidative stress adaptation improves the heat tolerance of Pseudomonas fluorescens SN15-2. Biol. Control138 104070

    CAS  Article  Google Scholar 

  9. Chen TH and Murata N 2011 Glycine betaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ.34 1–20

    Article  Google Scholar 

  10. Cheng Z, Chi M, Li G, Chen H, Sui Y, Sun H, Wisniewski M, Liu Y et al. 2016 Heat shock improves stress tolerance and biocontrol performance of Rhodotorula mucilaginosa. Biol. Control95 49–56

    CAS  Article  Google Scholar 

  11. Dunlap CA, Evans KO, Bart T, Teun B and Schisler DA 2007 Osmotic shock tolerance and membrane fluidity of cold-adapted Cryptococcus flavescens OH 182.9, previously reported as C. nodaensis, a biocontrol agent of Fusarium head blight. FEMS Yeast Res.7 449–458

    CAS  Article  Google Scholar 

  12. Frohlich A, Buddrus-Schiemann K, Durner J, Hartmann A and von Rad U 2012 Response of barley to root colonization by Pseudomonas sp. DSMZ 13134 under laboratory, greenhouse, and field conditions. J. Plant Interact.7 1–9

    Article  Google Scholar 

  13. Fu Q, Liu C, Ding N, Lin Y and Guo B 2010 Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress. Agric. Water Manag.97 1994–2000

    Article  Google Scholar 

  14. Galinski EA and Trüper HG 1994 Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol. Rev.15 95–108

    CAS  Article  Google Scholar 

  15. Galvão TC, De Lorenzo V and Cánovas D 2006 Uncoupling of choline -O- sulphate utilization from osmoprotection in Pseudomonas putida. Mol. Microbiol.62 1643–1654

    Article  Google Scholar 

  16. Guan N, Li J, Shin H-d, Du G, Chen J and Liu L 2017 Microbial response to environmental stresses: from fundamental mechanisms to practical applications. Appl. Microbiol. Biotechnol.101 3991–4008

    CAS  Article  Google Scholar 

  17. Haas D and Defago G 2005 Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol.3 307–319

    CAS  Article  Google Scholar 

  18. Huang W and Wilks A 2017 A rapid seamless method for gene knockout in Pseudomonas aeruginosa. BMC Microbiol.17 1–8

    Article  Google Scholar 

  19. Kempf B and Bremer E 1998 Stress responses of Bacillus subtilis to high osmolarity environments: Uptake and synthesis of osmoprotectants. J. Biosci.23 447–455

    CAS  Article  Google Scholar 

  20. Kets EPW, de Bont JAM and Heipieper HJ 1996 Physiological response of Pseudomonas putida S12 subjected to reduced water activity. FEMS Microbiol. Lett.139 133–137

    CAS  Article  Google Scholar 

  21. Koga T, Katagiri T, Hori H and Takumi K 2002 Alkaline adaptation induces cross-protection against some environmental stresses and morphological change in Vibrio parahaemolyticus. Microbiol. Res.157 249–255

    Article  Google Scholar 

  22. Koga T and Takumi K 1995 Nutrient starvation induces cross protection against heat, osmotic, or H2O2 challenge in Vibrio parahaemolyticus. Microbiol. Immunol.39 213–215

    CAS  Article  Google Scholar 

  23. Lamark T, Kaasen I, Eshoo MW, Falkenberg P, McDougall J and Strom AR 1991 DNA sequence and analysis of the bet genes encoding the osmoregulatory choline—glycine betaine pathway of Escherichia coli. Mol. Microbiol.5 1049–1064

    CAS  Article  Google Scholar 

  24. Landfald B and Strm AR 1986 Choline–glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J. Bacteriol.165 849–855

    CAS  Article  Google Scholar 

  25. Rudulier DL, Strom AR, Dandekar A, Smith L and Valentine R 1984 Molecular biology of osmoregulation. Science224 1064–1068

    Article  Google Scholar 

  26. Li X, Gu G, Chen W, Gao L, Wu X and Zhang L 2018 The outer membrane protein OprF and the sigma factor SigX regulate antibiotic production in Pseudomonas fluorescens 2P24. Microbiol. Res.206 159–167

    CAS  Article  Google Scholar 

  27. Liu J, Wisniewski M, Droby S, Norelli J, Hershkovitz V, Tia S and Farrell R 2012 Increase in antioxidant gene transcripts, stress tolerance and biocontrol efficacy of Candida oleophila following sublethal oxidative stress exposure. FEMS Microbiol. Ecol.80 578–590

    CAS  Article  Google Scholar 

  28. Lou H, Wang X, Chen J, Wang B and Wang W 2018 Transcriptomic response of Ralstonia solanacearum to antimicrobial Pseudomonas fluorescens SN15-2 metabolites. Can. J. Microbiol.64 816–825

    CAS  Article  Google Scholar 

  29. Lugtenberg B and Kamilova F 2009 Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol.63 541–556

    CAS  Article  Google Scholar 

  30. Ma Y, Wang Q, Gao X and Zhang Y 2017 Biosynthesis and uptake of glycine betaine as cold-stress response to low temperature in fish pathogen Vibrio anguillarum. J. Microbiol.55 44–55

    CAS  Article  Google Scholar 

  31. Rodríguez-González O, Walkling-Ribeiro M, Jayaram S and Griffiths MW 2011 Cross-protective effects of temperature, pH, and osmotic and starvation stresses in Escherichia coli O157: H7 subjected to pulsed electric fields in milk. Int. Dairy J.21 953–962

    Article  Google Scholar 

  32. Sage AE, Vasil AI and Vasil ML 1997 Molecular characterization of mutants affected in the osmoprotectant-dependent induction of phospholipase C in Pseudomonas aeruginosa PAO1. Mol. Microbiol.23 43–56

    CAS  Article  Google Scholar 

  33. Sand M, Stahl J, Waclawska I, Ziegler C and Averhoff B 2014 Identification of an osmo-dependent and an osmo-independent choline transporter in Acinetobacter baylyi: implications in osmostress protection and metabolic adaptation. Environ. Microbiol.16 1490–1502

    CAS  Article  Google Scholar 

  34. Velasco-García R, Mújica-Jiménez C, Mendoza-Hernández G and Muñoz-Clares RA 1999 Rapid purification and properties of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa. J. Bacteriol.181 1292–1300

    Article  Google Scholar 

  35. Velasco-García R, Villalobos MA, Ramírez-Romero MA, Mujica-Jimenez C, Iturriaga G and Munoz-Clares RA 2006 Betaine aldehyde dehydrogenase from Pseudomonas aeruginosa: cloning, over-expression in Escherichia coli, and regulation by choline and salt. Arch. Microbiol.185 14–22

    Article  Google Scholar 

  36. Vyrides I and Stuckey DC 2017 Compatible solute addition to biological systems treating waste/wastewater to counteract osmotic and other environmental stresses: a review. Crit. Rev. Biotechnol.37 865–879

    CAS  Article  Google Scholar 

  37. Wang Y, Wang P, Xia J, Yu T, Lou B, Wang J and Zheng X 2010 Effect of water activity on stress tolerance and biocontrol activity in antagonistic yeast Rhodosporidium paludigenum. Int. J. Food Microbiol.143 103–108

    CAS  Article  Google Scholar 

  38. Wargo MJ 2013 Choline catabolism to glycine betaine contributes to Pseudomonas aeruginosa survival during murine lung infection. PLoS One8 e56850

    CAS  Article  Google Scholar 

  39. Wargo MJ and Matthew J 2013 Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa. Appl. Environ. Microbiol.79 2112–2120

    CAS  Article  Google Scholar 

  40. Whatmore AM and Reed RH 1990 Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation. J. Gen. Microbiol.136 2521–2526

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China under Grant number 2017YFD0200400; the Project of Prospering Agriculture through Science and Technology of Shanghai, China under Grant number Hu NongKeChuangZi (2018) No. 2–5.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Additional information

Corresponding editor: Ashis Kumar Nandi

Communicated by Ashis Kumar Nandi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, D., Wang, X., Wang, J. et al. Choline–betaine pathway contributes to hyperosmotic stress and subsequent lethal stress resistance in Pseudomonas protegens SN15-2. J Biosci 45, 85 (2020). https://doi.org/10.1007/s12038-020-00060-3

Download citation

Keywords

  • Choline–betaine pathway
  • hyperosmotic
  • Pseudomonas protegens SN15-2
  • stress resistance