Deciphering the interaction of benzoxaborole inhibitor AN2690 with connective polypeptide 1 (CP1) editing domain of Leishmania donovani leucyl-tRNA synthetase

Abstract

Leucyl-tRNA synthetases (LRS) catalyze the linkage of leucine with tRNALeu. A large insertion CP1 domain (Connective Polypeptide 1) in LRS is responsible for post-transfer editing of mis-charged aminoacyl-tRNAs. Here, we characterized the CP1 domain of Leishmania donovani, a protozoan parasite, and its role in editing activity and interaction with broad spectrum anti-fungal, AN2690. The deletion mutant of LRS, devoid of CP1 domain (LRS-CP1Δ) was constructed, followed by determination of its role in editing and aminoacylation. Binding of AN2690 and different amino acids with CP1 deletion mutant and full length LRS was evaluated using isothermal titration calorimetry (ITC) and molecular dynamics simulations. The recombinant LRS-CP1Δ protein did not catalyze the aminoacylation and the editing reaction when compared to full-length LRS. Thus, indicating that CP1 domain was imperative for both aminoacylation and editing activities of LRS. Binding studies with different amino acids indicated selectivity of isoleucine by CP1 domain over other amino acids. These studies also indicated high affinity of AN2690 with the editing domain. Molecular docking studies indicated that AN2690-CP1 domain complex was stabilized by hydrogen bonding and hydrophobic interactions resulting in high binding affinity between the two. Our data suggests CP1 is crucial for the function of L. donovani LRS.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, Depledge DP, Fischer S, et al. 2010 TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 38 D457–D462

    CAS  PubMed  Google Scholar 

  2. Baker SJ, Zhang YK, Akama T, Lau A, Zhou H, Hernandez V, Mao W, Alley MR, Sanders V and Plattner JJ 2006 Discovery of a new boron-containing antifungal agent, 5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2690), for the potential treatment of onychomycosis. J. Med. Chem. 49 4447–4450

    CAS  PubMed  Google Scholar 

  3. Baykov AA, Evtushenko OA and Avaeva SM 1988 A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal. Biochem. 171 266–270

    CAS  PubMed  Google Scholar 

  4. Boniecki MT, Vu MT, Betha AK and Martinis SA 2008 CP1-dependent partitioning of pre-transfer and post-transfer editing in leucyl-tRNA synthetase. Proc. Nat. Acad. Sci. USA 105 e19223–e19228

    Google Scholar 

  5. Boutet E, Lieberherr D, Tognolli M, Schneider M and Bairoch A 2007 UniProtKB/Swiss-Prot. Methods Mol. Biol. 406 89–112

    CAS  PubMed  Google Scholar 

  6. Cestari I and Stuart K 2013 A spectrophotometric assay for quantitative measurement of aminoacyl-tRNA synthetase activity. J. Biomol. Screen 18 490–497

    PubMed  Google Scholar 

  7. Chadha S, Vijayan R, Gupta S, Munde M, Gourinath S and Madhubala R 2018 Genetic manipulation of Leishmania donovani threonyl tRNA synthetase facilitates its exploration as a potential therapeutic target. PLoS Negl. Trop. Dis. 12 e0006575

    PubMed  PubMed Central  Google Scholar 

  8. Chen JF, Guo NN, Li T, Wang ED and Wang YL 2000 CP1 domain in Escherichia coli leucyl-tRNA synthetase is crucial for its editing function. Biochemistry 39 6726–6731

    CAS  PubMed  Google Scholar 

  9. Corbeil CR, Williams CI and Labute P 2012 Variability in docking success rates due to dataset preparation, J. Comput. Aided Mol. Des. 26 775–786

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cusack S, Yaremchuk A and Tukalo M 2000 The 2 Å crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue. EMBO J. 19 2351–2361

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cvetesic N, Palencia A, Halasz I, Cusack S and Gruic-Sovulj I 2014 The physiological target for LeuRS translational quality control is norvaline, EMBO J. 33 e1639–e1653

    Google Scholar 

  12. DeLano WL 2002 Pymol: An open-source molecular graphics tool. CCP4 Newslett. Protein Crystallogr. 40 82–92

    Google Scholar 

  13. Eniyan K, Dharavath S, Vijayan R, Bajpai U and Gourinath S 2018 Crystal structure of UDP-N-acetylglucosamine-enolpyruvate reductase (MurB) from Mycobacterium tuberculosis. Biochim. Biophys. Acta Proteins Proteom. 1866 397–406

    CAS  PubMed  Google Scholar 

  14. Fukunaga R and Yokoyama S 2005 Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation. J. Mol. Biol. 346 57–71

    CAS  PubMed  Google Scholar 

  15. Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, et al. 2016 ‘OPLS3: a force field providing broad coverage of drug-like small molecules and proteins,’ J. Chem. Theory Comput. 12 281–296

    CAS  PubMed  Google Scholar 

  16. Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4 435–447

    CAS  PubMed  Google Scholar 

  17. Huang Q, Zhou XL, Hu QH, Lei HY, Fang ZP, Yao P and Wang ED 2014 A bridge between the aminoacylation and editing domains of leucyl-tRNA synthetase is crucial for its synthetic activity. RNA 20 1440–1450

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ibba M and Soll D 2000 Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 69 617–650

    CAS  PubMed  Google Scholar 

  19. Ladbury JE 2010 Calorimetry as a tool for understanding biomolecular interactions and an aid to drug design. Biochem. Soc. Trans. 38 888–893

    CAS  PubMed  Google Scholar 

  20. Lin L, Hale SP and Schimmel P 1996 Aminoacylation error correction. Nature. 384 33–34

    CAS  PubMed  Google Scholar 

  21. Liu RJ, Tan M, Du DH, Xu BS, Eriani G and Wang ED 2011 Peripheral insertion modulates the editing activity of the isolated CP1 domain Leucyl tRNA synthetase. J. Biochem. 440 217–227

    CAS  Google Scholar 

  22. Lincecum TL, Tukalo M, Yaremchuk A, Mursinna RS, Williams AM and Sproat BS 2003 Structural and mechanistic basis of pre-and post-transfer editing by leucyl-tRNA synthetase. Mol. Cell. 11 e951–e963

    Google Scholar 

  23. Manhas R, Tandon S, Sen SS, Tiwari N, Munde M and Madhubala R 2018 Leishmania donovani parasites are inhibited by the benzoxaborole AN2690 targeting leucyl-tRNA synthetase. Antimicrob. Agents Chemother. 62 e00079-18

    PubMed  PubMed Central  Google Scholar 

  24. Martinis SA and Boniecki M 2010 The balance between pre- and post-transfer editing in tRNA synthetases. FEBS Lett. 584 455–459

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Martinis SA and Fox GE 1998 Non-standard amino acid recognition by Escherichia coli leucyl-tRNA synthetase. Nucleic Acids Symp. Ser. 36 e125–e128

    Google Scholar 

  26. Neudert G and Klebe G 2011 DSX: a knowledge-based scoring function for the assessment of protein-ligand complexes. J. Chem. Inf. Model. 51 2731–2745

    CAS  PubMed  Google Scholar 

  27. Palencia A, Crépin T, Vu MT, Lincecum TL Jr, Martinis SA and Cusack S 2012 Structural dynamics of the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase. Nat. Struct. Mol. Biol. 19 677–684

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Palencia A, Liu RJ, Lukarska M, Gut J, Bougdour A, Touquet B, Wang ED, Li X, Alley MR, Freund YR, Rosenthal PJ, Hakimi MA and Cusack S 2016 Cryptosporidium and Toxoplasma parasites are inhibited by a benzoxaborole targeting leucyl-tRNA synthetase. Antimicrob. Agents Chemother. 60 5817–5827

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Pham JS, Dawson KL, Jackson KE, Lim EE, Pasaje CF, Turner KE and Ralph SA 2014 Aminoacyl-tRNA synthetases as drug targets in eukaryotic parasites. Int. J. Parasitol. Drugs Drug Resist. 4 1–13

    PubMed  Google Scholar 

  30. Rock FL, Mao W, Yaremchuk A, Tukalo M, Crepin T, Zhou H, Zhang YK, Hernandez V, et al. 2007 An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Science 316 1759–1761

    CAS  PubMed  Google Scholar 

  31. Sali A and Blundell TL 1993 Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234 779–815

    CAS  PubMed  Google Scholar 

  32. Schimmel P, Shepard A and Shiba K 1992 Intron locations and functional deletions in relation to design and evolution of a subgroup of class I tRNA synthetases. Protein Sci. 1 1387–1391

    Google Scholar 

  33. Schrödinger Release 2019–1: Epik, Schrödinger, LLC, New York, NY, 2019

  34. Seiradake E, Mao W, Hernandez V, Baker SJ, Plattner JJ, Alley MR and Cusack S 2009 Crystal structures of the human and fungal cytosolic Leucyl-tRNA synthetase editing domains: A structural basis for the rational design of antifungal benzoxaboroles. J. Mol. Biol. 390 196–207

    CAS  PubMed  Google Scholar 

  35. Sharma DP, Vijayan R, Rehman SAA and Gourinath S 2018 Structural insights into the interaction of helicase and primase in Mycobacterium tuberculosis. Biochem. J. 475 3493–3509

    CAS  PubMed  Google Scholar 

  36. Sonoiki E, Palencia A, Guo D, Ahyong V, Dong C, Li X, Hernandez VS, Zhang YK, et al. 2016 Antimalarial benzoxaboroles target Plasmodium falciparum leucyl-tRNA synthetase. Antimicrob. Agents Chemother. 60 4886

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Splan KE, Forsyth KM, Boniecki MT and Martinis SA 2008 In vitro assays for the determination of aminoacyl-tRNA synthetase editing activity. Methods 44 119–128

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tan M, Zhu B, Zhou XL, He R, Chen X, Eriani G and Wang ED 2010 tRNA-dependent pretransfer editing by prokaryotic leucyl-tRNA synthetase. J. Biol. Chem. 285 3235–3244

    CAS  PubMed  Google Scholar 

  39. Thompson JD, Higgins DG and Gibson TJ 1994 CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22 4673–4680

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tiwary N, Srivastava A, Kundu B and Munde M 2018 Biophysical insight into the heparin-peptide interaction and its modulation by a small molecule. J. Mol. Recognit. 31 e2674

    Google Scholar 

  41. Tukalo M, Yaremchuk A, Fukunaga R, Yokoyama S and Cusack S 2005 The crystal structure of leucyl-tRNA synthetase complexed with tRNA Leu in the post-transfer-editing conformation. Nat. Struct. Mol. Biol. 12 e923–e930

    Google Scholar 

  42. Wang R, Lai L and Wang S 2002 Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comp. Aid. Mol. Des. 16 11–26

    CAS  Google Scholar 

  43. Wiedemann C, Bellstedt P and Görlach M 2013 CAPITO—A web server-based analysis and plotting tool for circular dichroism data. Bioinformatics 29 1750–1757

    CAS  PubMed  Google Scholar 

  44. Zhai Y and Martinis SA 2005 Two conserved threonines collaborate in the Escherichia coli leucyl-tRNA synthetase amino acid editing mechanism, Biochemistry 44 e15437–e15443

    Google Scholar 

  45. Zhou XL and Wang ED 2009 Two tyrosine residues outside the editing active site in Giardia lamblia leucyl-tRNA synthetase are essential for the post-transfer editing. Biochem. Biophys. Res. Commun. 386 510–515

    CAS  PubMed  Google Scholar 

  46. Zhou XL, Yao P, Ruan LL, Zhu B, Luo J, Qu LH and Wang ED 2009 A unique insertion in the CP1 domain of Giardia lamblia leucyl-tRNA synthetase. Biochemistry 48 1340–1347

    CAS  PubMed  Google Scholar 

  47. Zhu B, Yao P, Tan M, Erian G and Wang ED 2009 tRNA-independent pre-transfer editing by class I leucyl-tRNA synthetase. J. Biol. Chem. 284 e3418–e3424

    Google Scholar 

Download references

Acknowledgements

We thank the Central Instrumentation facility at School of Life Sciences, Jawaharlal Nehru University, for providing the imaging facility. We also thank Advanced Instrumentation Research Facility, Jawaharlal Nehru University, for CD spectroscopy analysis.

Funding

R Madhubala is AS Paintal Distinguished Scientist Chair of ICMR. ST is a recipient of funding from the Indian Council of Medical Research, India. R Manhas and NT are recipients of funding from the University Grants Commission, India. RV is a SERB post-doctoral fellow. This work was funded by the Department of Science and Technology, India (Grant No. VI-D&P/569/2016-17/TDT/C).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Rohini Muthuswami or Rentala Madhubala.

Additional information

Corresponding editor: Ravindra Venkatramani

Communicated by Ravindra Venkatramani.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tandon, S., Manhas, R., Tiwari, N. et al. Deciphering the interaction of benzoxaborole inhibitor AN2690 with connective polypeptide 1 (CP1) editing domain of Leishmania donovani leucyl-tRNA synthetase. J Biosci 45, 63 (2020). https://doi.org/10.1007/s12038-020-00031-8

Download citation

Keywords

  • AN2690
  • benzoxaborole inhibitor
  • CP1 domain
  • L. donovani
  • leucyl-tRNA synthetase