A novel role of tumor suppressor ZMYND8 in inducing differentiation of breast cancer cells through its dual-histone binding function

Abstract

Accumulating evidences indicate the involvement of epigenetic deregulations in cancer. While some epigenetic regulators with aberrant functions in cancer are targeted for improving therapeutic outcome in patients, reinstating the functions of tumor-suppressor-like epigenetic regulators might further potentiate anti-cancer therapies. Epigenetic reader zinc-finger MYND-type-containing 8 (ZMYND8) has been found to be endowed with multiple anti-cancer functions like inhibition of tumor cell migration and proliferation. Here, we report another novel tumor suppressor role of ZMYND8 as an inducer of differentiation in breast cancer cells, by upregulating differentiation genes. Interestingly, we also demonstrated that ZMYND8 mediates all its anti-tumor roles through a common dual-histone mark binding to H4K16Ac and H3K36Me2. We validated these findings by both biochemical and biophysical analyses. Furthermore, we also confirmed the differentiation-inducing potential of ZMYND8 in vivo, using 4T1 murine breast cancer model in Balb/c mice. Differentiation therapy holds great promise in cancer therapy, since it is non-toxic and makes the cancer cells therapy-sensitive. In this scenario, we propose epigenetic reader ZMYND8 as a potential therapeutic candidate for differentiation therapy in breast cancer.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Adhikary S, Sanyal S, Basu M, Sengupta I, Sen S, Srivastava DK, Roy S and Das C 2016 Selective recognition of H3.1K36 dimethylation/H4K16 acetylation facilitates the regulation of all-trans-retinoic acid (ATRA)-responsive genes by putative chromatin reader ZMYND8. J. Biol. Chem. 291 2664–2681

    CAS  Article  Google Scholar 

  2. Basu M, Sengupta I, Khan MW, Srivastava DK, Chakrabarti P, Roy S and Das C 2017a Dual histone reader ZMYND8 inhibits cancer cell invasion by positively regulating epithelial genes. Biochem. J. 474 1919–1934

    CAS  Article  Google Scholar 

  3. Basu M, Khan MW, Chakrabarti P and Das C 2017b Chromatin reader ZMYND8 is a key target of all trans retinoic acid-mediated inhibition of cancer cell proliferation. Biochim. Biophys. Acta 1860 450–459

    CAS  Article  Google Scholar 

  4. Baxter E, Windloch K, Gannon F and Lee JS 2014 Epigenetic regulation in cancer progression. Cell Biosci. 4 45

    Article  Google Scholar 

  5. Chen Y, Zhang B, Bao L, Jin L, Yang M, Peng Y, Kumar A, Wang JE, Wang C, Zou X, et al. 2018 ZMYND8 acetylation mediates HIF-dependent breast cancer progression and metastasis. J. Clin. Invest. 128 1937–1955

    Article  Google Scholar 

  6. Cimmino L, Dawlaty MM, Ndiaye-Lobry D, Yap YS, Bakogianni S, Yu Y, Bhattacharyya S, Shaknovich R, Geng H, Lobry C, et al. 2015 TET1 is a tumor suppressor of hematopoietic malignancy. Nat. Immunol. 16 653–662

    CAS  Article  Google Scholar 

  7. Dagogo-Jack I, and Shaw AT 2018 Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15 81–94

    CAS  Article  Google Scholar 

  8. Ehrlich M 2009 DNA hypomethylation in cancer cells. Epigenomics 1 239–259

    CAS  PubMed  Google Scholar 

  9. El-Kenawi AE and El-Remessy AB 2013 Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales. Br. J. Pharmacol. 170 712–729

    CAS  Article  Google Scholar 

  10. Fossey SC, Kuroda S, Price JA, Pendleton JK, Freedman BI and Bowden DW 2000 Identification and characterization of PRKCBP1, a candidate RACK-like protein. Mamm. Genome 11 919–925

    CAS  Article  Google Scholar 

  11. Gailhouste L, Liew LC, Yasukawa K, Hatada I, Tanaka Y, Nakagama H and Ochiya T 2018 Differentiation therapy by epigenetic reconditioning exerts antitumor effects on liver cancer cells. Mol. Ther. 26 1840–1854

    CAS  Article  Google Scholar 

  12. Gan L, Yang Y, Li Q, Feng Y, Liu T and Guo W 2018 Epigenetic regulation of cancer progression by EZH2: from biological insights to therapeutic potential. Biomark. Res. 6 10

    Article  Google Scholar 

  13. Ghosh K, Tang M, Kumari N, Nandy A, Basu S, Mall DP, Rai K and Biswas D 2018 Positive regulation of transcription by human ZMYND8 through its association with P-TEFb complex. Cell Rep. 24 2141–2154

    CAS  Article  Google Scholar 

  14. Gong F and Miller KM 2018 Double duty: ZMYND8 in the DNA damage response and cancer. Cell Cycle 17 414–420

    CAS  Article  Google Scholar 

  15. Gong F, Chiu L-Y, Cox B, Aymard F, Clouaire T, Leung JW, Cammarata M, Perez M, Agarwal P, Brodbelt JS, et al. 2015 Screen identifies bromodomain protein ZMYND8 in chromatin recognition of transcription-associated DNA damage that promotes homologous recombination. Genes Dev. 29 197–211

    Article  Google Scholar 

  16. Huang DW, Sherman BT and Lempicki RA 2009 Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4 44–57

    CAS  Article  Google Scholar 

  17. Kutny MA, Collins SJ, Loeb K, Walter RB and Meshinchi S 2010 All-trans-retinoic acid (ATRA) causes extensive differentiation in the NPM mutant, non-APL leukemic cell line OCI-AML3. Blood 116

  18. Lee K-H, Park J-W, Sung H-S, Choi Y-J, Kim WH, Lee HS, Chung H-J, Shin H-W, Cho C-H, Kim T-Y, et al. 2015 PHF2 histone demethylase acts as a tumor suppressor in association with p53 in cancer. Oncogene 34 2897–2909

    CAS  Article  Google Scholar 

  19. Leong HS, Chen K, Hu Y, Lee S, Corbin J, Pakusch M, Murphy JM, Majewski IJ, Smyth GK, Alexander WS, et al. 2013 Epigenetic regulator Smchd1 functions as a tumor suppressor. Cancer Res. 73 1591–1599

    CAS  Article  Google Scholar 

  20. Li N, Li Y, Lv J, Zheng X, Wen H, Shen H, Zhu G, Chen T-Y, Dhar SS, Kan P-Y, et al. 2016 ZMYND8 reads the dual histone mark H3K4me1-H3K14ac to antagonize the expression of metastasis-linked genes. Mol. Cell 63 470–484

    CAS  Article  Google Scholar 

  21. Malovannaya A, Lanz RB, Jung SY, Bulynko Y, Le NT, Chan DW, Ding C, Shi Y, Yucer N, Krenciute G, et al. 2011 Analysis of the human endogenous coregulator complexome. Cell 145 787–799

    CAS  Article  Google Scholar 

  22. Mukherjee S, Manna A, Bhattacharjee P, Mazumdar M, Saha S, Chakraborty S, Guha D, Adhikary A, Jana D, Gorain M, et al. 2016 Non-migratory tumorigenic intrinsic cancer stem cells ensure breast cancer metastasis by generation of CXCR4+ migrating cancer stem cells. Oncogene 35 4937–4948

    CAS  Article  Google Scholar 

  23. Salvador MA, Wicinski J, Cabaud O, Toiron Y, Finetti P, Josselin E, Lelievre H, Kraus-Berthier L, Depil S, Bertucci F, et al. 2013 The histone deacetylase inhibitor abexinostat induces cancer stem cells differentiation in breast cancer with low xist expression. Clin. Cancer Res. 19 6520–6531

    CAS  Article  Google Scholar 

  24. Shen H, Xu W, Guo R, Rong B, Gu L, Wang Z, He C, Zheng L, Hu X, Hu Z, et al. 2016 Suppression of enhancer overactivation by a RACK7-histone demethylase complex. Cell 165 331–342

    CAS  Article  Google Scholar 

  25. Spruijt CG, Luijsterburg MS, Menafra R, Lindeboom RGH, Jansen PWTC, Edupuganti RR, Baltissen MP, Wiegant WW, Voelker-Albert MC, Matarese F, et al. 2016 ZMYND8 co-localizes with NuRD on target genes and regulates poly (ADP-ribose)-dependent recruitment of GATAD2A/NuRD to sites of DNA damage. Cell Rep. 17 783–798

    CAS  Article  Google Scholar 

  26. Subramaniam D, Thombre R, Dhar A and Anant S 2014 DNA methyltransferases: a novel target for prevention and therapy. Front. Oncol. 4 80

    Article  Google Scholar 

  27. Tallen G and Riabowol K 2017 DisorderING promotes epigenetic order. FEBS Lett. 591 257–259

    CAS  Article  Google Scholar 

  28. de Thé H 2018 Differentiation therapy revisited. Nat. Rev. Cancer 18 117–127

    Article  Google Scholar 

  29. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A and Narechania A 2003 PANTHER: A library of protein families and subfamilies indexed by function. Genome Res. 13 2129–2141

    CAS  Article  Google Scholar 

  30. Witsch E, Sela M and Yarden Y 2010 Roles for growth factors in cancer progression. Physiology 25 85–101

    CAS  Article  Google Scholar 

  31. Wu JN and Roberts CWM 2013 ARID1A mutations in cancer: another epigenetic tumor suppressor? Cancer Discov. 3 35–43

    CAS  Article  Google Scholar 

  32. Wu M-J, Kim MR, Chen Y-S, Yang J-Y and Chang C-J 2017 Retinoic acid directs breast cancer cell state changes through regulation of TET2-PKCζ pathway. Oncogene 36 3193–3206

    CAS  Article  Google Scholar 

  33. Xu WP, Zhang X and Xie WF 2014 Differentiation therapy for solid tumors. J. Dig. Dis. 15 159–165

    Article  Google Scholar 

  34. Yan M and Liu Q 2016 Differentiation therapy: a promising strategy for cancer treatment. Chin. J. Cancer 35 3

    Article  Google Scholar 

  35. Yan Y, Li Z, Xu X, Chen C, Wei W, Fan M, Chen X, Li JJ, Wang Y and Huang J 2016 All-trans retinoic acids induce differentiation and sensitize a radioresistant breast cancer cells to chemotherapy. BMC Complement. Altern. Med. 16 113

    Article  Google Scholar 

  36. Yao N, Li J, Liu H, Wan J, Liu W and Zhang M 2017 The structure of the ZMYND8/Drebrin complex suggests a cytoplasmic sequestering mechanism of ZMYND8 by Drebrin. Structure 25 1657–1666

    CAS  Article  Google Scholar 

  37. Zeng W, Kong Q, Li C and Mao B 2010 Xenopus RCOR2 (REST corepressor 2) interacts with ZMYND8, which is involved in neural differentiation. Biochem. Biophys. Res. Commun. 394 1024–1029

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was funded by research grants from Biomolecular Assembly, Recognition and Dynamics Project (Grant 12-R&D-SIN-5.04-0103) from the Department of Atomic Energy, India, and Science and Engineering Research Board File No. EMR/2014/000335 by Department of Science and Technology (DST), India, provided to CD. SM, SA, AS and PM thank SERB-NPDF, CSIR, DBT-RA programme and DST, India, respectively for fellowship support. We also thank the Genome Informatics Research and Development Unit, Bionivid Technology Pvt. Ltd., for help in microarray data analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chandrima Das.

Additional information

This article is part of the Topical Collection: Chromatin Biology and Epigenetics.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Sen, S., Adhikary, S. et al. A novel role of tumor suppressor ZMYND8 in inducing differentiation of breast cancer cells through its dual-histone binding function. J Biosci 45, 2 (2020). https://doi.org/10.1007/s12038-019-9980-5

Download citation

Keywords

  • Cancer
  • differentiation
  • dual-histone reader
  • ZMYND8