Genomic organization of Polycomb Response Elements and its functional implication in Drosophila and other insects

Abstract

The epigenetic memory is an essential aspect of multicellular organisms to maintain several cell types and their gene expression pattern. This complex process uses a number of protein factors and specific DNA elements within the developmental cues to achieve this. The protein factors involved in the process are the Polycomb group (PcG) members, and, accordingly, the DNA sequences that interact with these proteins are called Polycomb Response Elements (PREs). Since the PcG proteins are highly conserved among higher eukaryotes, including insects, and function at thousands of sites in the genomes, it is expected that PREs may also be present across the genome. However, the studies on PREs in insect species, other than Drosophila, is currently lacking. We took a bioinformatics approach to develop an inclusive PRE prediction tool, ‘PRE Mapper’, to address this need. By applying this tool on the Drosophila melanogaster genome, we predicted >20,000 PREs. When compared with the available PRE prediction methods, this tool shows far better performance by correctly identifying the in vivo binding sites of PcG proteins, identified by genome-scale ChIP experiments. Further analysis of the predicted PREs shows their cohabitation with chromatin domain boundary elements at several places in the Drosophila genome, possibly defining a composite epigenetic module. We analysed 10 insect genomes in this context and find several conserved features in PREs across the insect species with some variations in their occurrence frequency. These analyses leading to the identification of PRE in insect genomes contribute to our understanding of epigenetic mechanisms in these organisms.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Barges S, Mihaly J, Galloni M, Hagstrom K, Muller M, Shanower G, Schedl P, Gyurkovics H and Karch F 2000 The Fab-8 boundary defines the distal limit of the bithorax complex iab-7 domain and insulates iab-7 from initiation elements and a pre in the adjacent iab-8 domain. Development 127 779–790

    CAS  PubMed  Google Scholar 

  2. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert D, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL and Lander ES 2006 A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125 315–326

    CAS  PubMed  Google Scholar 

  3. Blastyak A, Mishra RK, Karch F and Gyurkovics H 2006 Efficient and specific targeting of polycomb group proteins requires cooperative interaction between grainyhead and pleiohomeotic. Mol. Cell. Biol. 26 1434–1444

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Brown JL, Fritsch C, Mueller J and Kassis JA 2003 The Drosophila pho-like gene encodes a YY1-related DNA binding protein that is redundant with pleiohomeotic in homeotic gene silencing. Development 130 285–294

    CAS  PubMed  Google Scholar 

  5. Brown JL, Grau DJ, DeVido SK and Kassis JA 2005 An Sp1/Klf binding site is important for the activity of a polycomb group response element from the Drosophila engrailed gene. Nucleic Acids Res. 33 5181–5189

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Brown JL, Mucci D, Whiteley M, Dirksen ML and Kassis JA 1998 The Drosophila polycomb group gene pleiohomeotic encodes a DNA binding protein with homology to the transcription factor YY1. Mol. Cell. 1 1057–1064

    CAS  PubMed  Google Scholar 

  7. Brown JP, Singh PB and Cowell IG 2003 Composite cis-acting epigenetic switches in eukaryotes: Lessons from Drosophila Fab-7 for the Igf2-H19 imprinted domain. Genetica 117 199–207

    CAS  PubMed  Google Scholar 

  8. Chan CS, Rastelli L and Pirrotta V 1994 A polycomb response element in the ubx gene that determines an epigenetically inherited state of repression. EMBO J. 13 2553–2564

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chintapalli VR, Wang J and Dow JA 2007 Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat. Genet. 39 715–720

    CAS  PubMed  Google Scholar 

  10. Cunningham MD, Brown JL and Kassis JA 2010 Characterization of the polycomb group response elements of the Drosophila melanogaster invected locus. Mol. Cell. Biol. 30 820–828

    CAS  PubMed  Google Scholar 

  11. Cuvier O, Hart CM, Kas E and Laemmli UK 2002 Identification of a multicopy chromatin boundary element at the borders of silenced chromosomal domains. Chromosoma 110 519–531

    CAS  PubMed  Google Scholar 

  12. Dejardin J, Rappailles A, Cuvier O, Grimaud C, Decoville M, Locker D and Cavalli G 2005 Recruitment of Drosophila polycomb group proteins to chromatin by DSP1. Nature 434 533–538

    CAS  PubMed  Google Scholar 

  13. Drosophila 12 Genomes Consortium 2007 Evolution of genes and genomes on the Drosophila phylogeny. Nature 450 203–218

    Google Scholar 

  14. Duan J, Li R, Cheng D, Fan W, Zha X, Cheng T, Wu Y, Wang J, Mita K, Xiang Z and Xia Q 2010 Silkdb v2.0: A platform for silkworm (Bombyx mori) genome biology. Nucleic Acids Res. 38 D453–456

    CAS  PubMed  Google Scholar 

  15. Eagen KP, Aiden EL and Kornberg RD 2017 Polycomb-mediated chromatin loops revealed by a subkilobase-resolution chromatin interaction map. Proc. Natl. Acad. Sci. USA 114 8764–8769

    CAS  PubMed  Google Scholar 

  16. Elsik CG, Tayal A, Unni DR, Burns GW and Hagen DE 2018 Hymenoptera genome database: Using hymenopteramine to enhance genomic studies of hymenopteran insects. Methods Mol. Biol. 1757 513–556

    CAS  PubMed  Google Scholar 

  17. Erceg J, Pakozdi T, Marco-Ferreres R, Ghavi-Helm Y, Girardot C, Bracken AP and Furlong EE 2017 Dual functionality of cis-regulatory elements as developmental enhancers and polycomb response elements. Genes Dev. 31 590–602

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Farkas G and Udvardy A 1992 Sequence of scs and scs’ Drosophila DNA fragments with boundary function in the control of gene expression. Nucleic Acids Res. 20 2604

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fiedler T and Rehmsmeier M 2006 Jpredictor: A versatile tool for the prediction of cis-regulatory elements. Nucleic Acids Res. 34 W546–W550

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Francis NJ and Kingston RE 2001 Mechanisms of transcriptional memory. Nat. Rev. Mol. Cell. Biol. 2 409–421

    CAS  PubMed  Google Scholar 

  21. Fujioka M, Yusibova GL, Zhou J and Jaynes JB 2008 The DNA-binding polycomb-group protein pleiohomeotic maintains both active and repressed transcriptional states through a single site. Development 135 4131–4139

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Giraldo-Calderón GI, Emrich SJ, MacCallum RM, Maslen G, Dialynas E, Topalis P, Ho N, Gesing S, VectorBase Consortium, Madey G, Collins FH and Lawson D 2015 Vectorbase: An updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases. Nucleic Acids Res. 43 D707–713

  23. Glastad KM, Hunt BG and Goodisman MAD 2019 Epigenetics in insects: Genome regulation and the generation of phenotypic diversity. Annu. Rev. Entomol. 64 185–203

    CAS  PubMed  Google Scholar 

  24. Hauenschild A, Ringrose L, Altmutter C, Paro R and Rehmsmeier M 2008 Evolutionary plasticity of polycomb/trithorax response elements in Drosophila species. PLoS Biol. 6 e261

    PubMed  PubMed Central  Google Scholar 

  25. i5K Consortium 2013 The i5k initiative: Advancing arthropod genomics for knowledge human health agriculture and the environment. J. Hered. 104 595–600

    PubMed Central  Google Scholar 

  26. International Aphid Genomics Consortium 2010 Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol. 8 e1000313

    Google Scholar 

  27. Jjingo D, Wang J, Conley AB, Lunyak VV and Jordan IK 2013 Compound cis-regulatory elements with both boundary and enhancer sequences in the human genome. Bioinformatics 29 3109–3112

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kar G, Kim JK, Kolodziejczyk AA, Natarajan KN, Triglia ET, Mifsud B, Elderkin S, Marioni JC, Pombo A and Teichmann SA 2017 Flipping between polycomb repressed and active transcriptional states introduces noise in gene expression. Nat. Commun. 8 36

    PubMed  PubMed Central  Google Scholar 

  29. Karch F, Galloni M, Sipos L, Gausz J, Gyurkovics H and Sched P 1994 Mcp and Fab-7: Molecular analysis of putative boundaries of cis-regulatory domains in the bithorax complex of Drosophila melanogaster. Nucleic Acids Res. 22 3138–3146

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kassis JA 2002 Pairing-sensitive silencing polycomb group response elements and transposon homing in Drosophila. Adv. Genet. 46 421–438

    CAS  PubMed  Google Scholar 

  31. Kassis JA and Brown JL 2013 Polycomb group response elements in Drosophila and vertebrates. Adv. Genet. 81 83–118

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kohler C and Villar CB 2008 Programming of gene expression by polycomb group proteins. Trends Cell Biol. 18 236–243

    PubMed  Google Scholar 

  33. Kuhn EJ, Viering MM, Rhodes KM and Geyer PK 2003 A test of insulator interactions in Drosophila. EMBO J 22 2463–2471

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Li B, Carey M and Workman JL 2007 The role of chromatin during transcription. Cell 128 707–719

    CAS  PubMed  Google Scholar 

  35. Mihaly J, Mishra RK and Karch F 1998 A conserved sequence motif in polycomb-response elements. Mol. Cell 1 1065–1066

    CAS  PubMed  Google Scholar 

  36. Mishra RK, Mihaly J, Barges S, Spierer A, Karch F, Hagstrom K, Schweinsberg SE and Schedl P 2001 The iab-7 polycomb response element maps to a nucleosome-free region of chromatin and requires both GAGA and pleiohomeotic for silencing activity. Mol. Cell Biol. 21 1311–1318

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Muller M, Hagstrom K, Gyurkovics H, Pirrotta V and Schedl P 1999 The Mcp element from the Drosophila melanogaster bithorax complex mediates long-distance regulatory interactions. Genetics 153 1333–1356

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Negre N, Hennetin J, Sun LV, Lavrov S, Bellis M, White KP and Cavalli G 2006 Chromosomal distribution of PcG proteins during Drosophila development. PLoS Biol. 4 e170

    PubMed  PubMed Central  Google Scholar 

  39. Oktaba K, Gutierrez L, Gagneur J, Girardot C, Sengupta AK, Furlong EE and Muller J 2008 Dynamic regulation by polycomb group protein complexes controls pattern formation and the cell cycle in Drosophila. Dev. Cell 15 877–889

    CAS  PubMed  Google Scholar 

  40. Okulski H, Druck B, Bhalerao S and Ringrose L 2011 Quantitative analysis of polycomb response elements (pres) at identical genomic locations distinguishes contributions of pre sequence and genomic environment. Epigenetics Chromatin 4 4

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Orsi GA, Kasinathan S, Hughes KT, Saminadin-Peter S, Henikoff S and Ahmad K 2014 High-resolution mapping defines the cooperative architecture of polycomb response elements. Genome Res. 24 809–820

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Papanicolaou A, Schetelig MF, Arensburger P, Atkinson PW, Benoit JB, Bourtzis K, Castanera P, Cavanaugh JP, et al. 2016 The whole genome sequence of the mediterranean fruit fly Ceratitis capitata (wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species. Genome Biol. 17 192

    PubMed  PubMed Central  Google Scholar 

  43. Papp B and Muller J 2006 Histone trimethylation and the maintenance of transcriptional on and off states by trxG and PcG proteins. Genes Dev. 20 2041–2054

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Prezioso C and Orlando V 2008 Polycomb proteins in mammalian cell differentiation and plasticity. FEBS Lett. 585 2067–2077

    Google Scholar 

  45. Ramírez F, Bhardwaj V, Arrigoni L, Lam KC, Grüning BA, Villaveces J, Habermann B, Akhtar A and Manke T 2018 High-resolution tads reveal DNA sequences underlying genome organization in flies. Nat. Commun. 9 189

    PubMed  PubMed Central  Google Scholar 

  46. Ramos E, Ghosh D, Baxter E and Corces VG 2006 Genomic organization of gypsy chromatin insulators in Drosophila melanogaster. Genetics 172 2337–2349

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ray P, De S, Mitra A, Bezstarosti K, Demmers JA, Pfeifer K and Kassis JA 2016 Combgap contributes to recruitment of polycomb group proteins in Drosophila. Proc. Natl. Acad. Sci. USA 113 3826–3831

    CAS  PubMed  Google Scholar 

  48. Ringrose L and Paro R 2004 Epigenetic regulation of cellular memory by the polycomb and trithorax group proteins. Annu. Rev. Genet. 38 413–443

    CAS  PubMed  Google Scholar 

  49. Ringrose L and Paro R 2007 Polycomb/trithorax response elements and epigenetic memory of cell identity. Development 134 223–232

    CAS  PubMed  Google Scholar 

  50. Ringrose L, Rehmsmeier M, Dura JM and Paro R 2003 Genome-wide prediction of polycomb/trithorax response elements in Drosophila melanogaster. Dev. Cell 5 759–771

    CAS  PubMed  Google Scholar 

  51. Rivera J, Keranen SVE, Gallo SM and Halfon MS 2019 Redfly: The transcriptional regulatory element database for Drosophila. Nucleic Acids Res. 47 D828–D834

    CAS  PubMed  Google Scholar 

  52. Schuettengruber B and Cavalli G 2009 Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development 136 3531–3542

    CAS  PubMed  Google Scholar 

  53. Schuettengruber B, Chourrout D, Vervoort M, Leblanc B and Cavalli G 2007 Genome regulation by polycomb and trithorax proteins. Cell 128 735–745

    CAS  PubMed  Google Scholar 

  54. Schuettengruber B, Ganapathi M, Leblanc B, Portoso M, Jaschek R, Tolhuis B, van Lohuizen M, Tanay A and Cavalli G 2009 Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos. PLoS Biol. 7 e13.

    PubMed  Google Scholar 

  55. Schuettengruber B, Elkayam NO, Sexton T, Entrevan M, Stern S, Thomas A, Yaffe E, Parrinello H, Tanay A and Cavalli G 2014 Cooperativity specificity and evolutionary stability of polycomb targeting in Drosophila. Cell Rep. 9 219–233

    CAS  PubMed  Google Scholar 

  56. Schwartz YB, Kahn TG, Nix DA, Li XY, Bourgon R, Biggin M and Pirrotta V 2006 Genome-wide analysis of polycomb targets in Drosophila melanogaster. Nat. Genet. 38 700–705

    CAS  PubMed  Google Scholar 

  57. Singh NP and Mishra RK 2015 Specific combinations of boundary element and polycomb response element are required for the regulation of the Hox genes in Drosophila melanogaster. Mech. Dev. 138 141–150

    CAS  PubMed  Google Scholar 

  58. Speir ML, Zweig AS, Rosenbloom KR, Raney BJ, Paten B, Nejad P, Lee BT, Learned K, Karolchik D, Hinrichs AS and Heitner S 2016 The UCSC genome browser database: 2016 update. Nucleic Acids Res. 44 D717–725

    CAS  PubMed  Google Scholar 

  59. Srinivasan A and Mishra RK 2012 Chromatin domain boundary element search tool for Drosophila. Nucleic Acids Res. 40 4385–4395

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Strutt H, Cavalli G and Paro R 1997 Co-localization of polycomb protein and gaga factor on regulatory elements responsible for the maintenance of homeotic gene expression. EMBO J. 16 3621–3632

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Tolhuis B, Muijrers I, de Wit E, Teunissen H, Talhout W, van Steensel B, van Lohuizen M 2006 Genome-wide profiling of PRC1 and PRC2 polycomb chromatin binding in Drosophila melanogaster. Nat. Genet. 38 694–699

    CAS  PubMed  Google Scholar 

  62. Vazquez J, Muller M, Pirrotta V and Sedat JW 2006 The Mcp element mediates stable long-range chromosome-chromosome interactions in Drosophila. Mol. Biol. Cell 17 2158–2165

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK and Nasonia Genome Working Group 2010 Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327 343–348

  64. Zeng J, Kirk BD, Gou Y, Wang Q and Ma J 2012 Genome-wide polycomb target gene prediction in Drosophila melanogaster. Nucleic Acids Res. 40 5848–5863

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhao C, Escalante LN, Chen H, Benatti TR, Qu J, Chellapilla S, Waterhouse RM, Wheeler D, Andersson MN, Bao R and Batterton M 2015 A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor. Curr. Biol. 25 613–620

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of Council for Scientific and Industrial Research (CSIR) and the bioinformatics facility of CSIR-CCMB.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rakesh K Mishra.

Additional information

This article is part of the Topical Collection: Chromatin Biology and Epigenetics.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, A., Mishra, R.K. Genomic organization of Polycomb Response Elements and its functional implication in Drosophila and other insects. J Biosci 45, 12 (2020). https://doi.org/10.1007/s12038-019-9975-2

Download citation

Keywords

  • Polycomb Response Elements
  • PRE Mapper
  • genome organization
  • epigenetic memory
  • insect genomes
  • Drosophila