Skip to main content

Advertisement

Log in

TET methylcytosine oxidases: new insights from a decade of research

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

In mammals, DNA methyltransferases transfer a methyl group from S-adenosylmethionine to the 5 position of cytosine in DNA. The product of this reaction, 5-methylcytosine (5mC), has many roles, particularly in suppressing transposable and repeat elements in DNA. Moreover, in many cellular systems, cell lineage specification is accompanied by DNA demethylation at the promoters of genes expressed at high levels in the differentiated cells. However, since direct cleavage of the C-C bond connecting the methyl group to the 5 position of cytosine is thermodynamically disfavoured, the question of whether DNA methylation was reversible remained unclear for many decades. This puzzle was solved by our discovery of the TET (Ten-Eleven Translocation) family of 5-methylcytosine oxidases, which use reduced iron, molecular oxygen and the tricarboxylic acid cycle metabolite 2-oxoglutarate (also known as α-ketoglutarate) to oxidise the methyl group of 5mC to 5-hydroxymethylcytosine (5hmC) and beyond. TET-generated oxidised methylcytosines are intermediates in at least two pathways of DNA demethylation, which differ in their dependence on DNA replication. In the decade since their discovery, TET enzymes have been shown to have important roles in embryonic development, cell lineage specification, neuronal function and cancer. We review these findings and discuss their implications here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Altemose N, Miga KH, Maggioni M and Willard HF 2014 Genomic characterization of large heterochromatic gaps in the human genome assembly. PLoS Comput. Biol. 10 e1003628

    PubMed  PubMed Central  Google Scholar 

  • An J, González-Avalos E, Chawla A, Jeong M, López-Moyado IF, Li W, Goodell MA, Chavez L, Ko M and Rao A 2015 Acute loss of TET function results in aggressive myeloid cancer in mice. Nat. Commun. 6 10071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aravind, L, Abhiman, S, and Iyer LM 2011 Natural history of the eukaryotic chromatin protein methylation system. Prog Mol Biol Transl Sci 101 105–176

    CAS  PubMed  Google Scholar 

  • Aravind L, Balasubramanian S and Rao A 2019 Unusual Activity of a Chlamydomonas TET/JBP Family Enzyme. Biochemistry (in press)

  • Aravind L and Koonin EV 2001 The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases. Genome Biol. 2 RESEARCH0007

  • Baylin SB and Jones PA 2016 Epigenetic Determinants of Cancer. Cold Spring Harb. Perspect. Biol. 8

    Google Scholar 

  • Benson MJ, Pino-Lagos K, Rosemblatt M and Noelle RJ 2007 All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. The Journal of experimental medicine 204 1765–1774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, Liu Y, Noushmehr H, Lange CP, van Dijk CM, Tollenaar RA, et al. 2011 Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat. Genet. 44 40–46

    PubMed  PubMed Central  Google Scholar 

  • Blaschke K, Ebata KT, Karimi MM, Zepeda-Martinez JA, Goyal P, Mahapatra S, Tam A, Laird DJ, Hirst M, Rao A, et al. 2013 Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500 222–226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bullard W, Lopes da Rosa-Spiegler J, Liu S, Wang Y and Sabatini R 2014 Identification of the glucosyltransferase that converts hydroxymethyluracil to base J in the trypanosomatid genome. J. Biol. Chem. 289 20273–20282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns RA and Mak TW 2013 Oncogenic isocitrate dehydrogenase mutations: mechanisms, models and clinical opportunities. Cancer Discov. 3 730–741

    CAS  PubMed  Google Scholar 

  • Catasti P, Gupta G, Garcia AE, Ratliff R, Hong L, Yau P, Moyzis RK and Bradbury EM 1994 Unusual structures of the tandem repetitive DNA sequences located at human centromeres. Biochemistry 33 3819–3830

    CAS  PubMed  Google Scholar 

  • Chavez L, Huang Y, Luong K, Agarwal S, Iyer LM, Pastor WA, Hench VK, Frazier-Bowers SA, Korol E, Liu S, et al. 2014 Simultaneous sequencing of oxidized methylcytosines produced by TET/JBP dioxygenases in Coprinopsis cinerea. Proc. Natl. Acad. Sci. USA 111 E5149–5158

    CAS  PubMed  Google Scholar 

  • Chen RZ, Pettersson U, Beard C, Jackson-Grusby L and Jaenisch R 1998 DNA hypomethylation leads to elevated mutation rates. Nature 395 89–93

    CAS  PubMed  Google Scholar 

  • Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G and Wahl SM 2003 Conversion of peripheral CD4+CD25− naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. The Journal of experimental medicine 198 1875–1886

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cimmino L, Dawlaty MM, Ndiaye-Lobry D, Yap YS, Bakogianni S, Yu Y, Bhattacharyya S, Shaknovich R, Geng H, Lobry C, et al. 2015 TET1 is a tumor suppressor of hematopoietic malignancy. Nat. Immunol. 16 653–662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Couronne L, Bastard C and Bernard OA 2012 TET2 and DNMT3A mutations in human T-cell lymphoma. The New England journal of medicine 366 95–96

    CAS  PubMed  Google Scholar 

  • Crawford DJ, Liu MY, Nabel CS, Cao X-J, Garcia BA and Kohli RM 2016 Tet2 Catalyzes Stepwise 5-Methylcytosine oxidation by an iterative and de novo mechanism. J. Am. Chem. Soc. 138 730–733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dang L, Jin S and Su SM 2010 IDH mutations in glioma and acute myeloid leukemia. Trends Mol. Med. 16 387–397

    CAS  PubMed  Google Scholar 

  • Dekker J, Marti-Renom MA and Mirny LA 2013 Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14 390–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delpu Y, McNamara T, Griffin P, Kaleem S, Narayan S, Schildkraut C, Miga K and Tahiliani M 2019 Chromosomal rearrangements at hypomethylated Satellite 2 sequences are associated with impaired replication efficiency and increased fork stalling. BioRxiv

  • Eden A, Gaudet F, Waghmare A and Jaenisch R 2003 Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300 455

    CAS  PubMed  Google Scholar 

  • Ehrlich M 2009 DNA hypomethylation in cancer cells. Epigenomics 1 239–259

    CAS  PubMed  Google Scholar 

  • Ehrlich M, Buchanan KL, Tsien F, Jiang G, Sun B, Uicker W, Weemaes CM, Smeets D, Sperling K, Belohradsky BH, et al. 2001 DNA methyltransferase 3B mutations linked to the ICF syndrome cause dysregulation of lymphogenesis genes. Hum. Mol. Genet. 10 2917–2931

    CAS  PubMed  Google Scholar 

  • Feinberg AP and Vogelstein B 1983 Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301 89–92

    CAS  PubMed  Google Scholar 

  • Feng Y, Arvey A, Chinen T, van der Veeken J, Gasteiger G and Rudensky AY 2014 Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell 158 749–763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS, Stemmer-Rachamimov AO, Suva ML and Bernstein BE 2016 Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529 110–114

    CAS  PubMed  Google Scholar 

  • Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J, Schlawe K, Chang HD, Bopp T, Schmitt E, et al. 2007 Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol 5 e38

    PubMed  PubMed Central  Google Scholar 

  • Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H and Jaenisch R 2003 Induction of tumors in mice by genomic hypomethylation. Science 300 489–492

    CAS  PubMed  Google Scholar 

  • Guo F, Li X, Liang D, Li T, Zhu P, Guo H, Wu X, Wen L, Gu TP, Hu B, et al. 2014 Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell 15 447–459

    CAS  PubMed  Google Scholar 

  • Hamel KM, Mandal M, Karki S and Clark MR 2014 Balancing proliferation with Igkappa recombination during B-lymphopoiesis. Front. Immunol. 5 139

    PubMed  PubMed Central  Google Scholar 

  • Haruta M, Shimada M, Nishiyama A, Johmura Y, Le Tallec B, Debatisse M and Nakanishi M 2016 Loss of maintenance DNA methylation results in abnormal DNA origin firing during DNA replication. Biochem. Biophys. Res. Commun. 469 960–966

    CAS  PubMed  Google Scholar 

  • Hashimoto H, Liu Y, Upadhyay AK, Chang Y, Howerton SB, Vertino PM, Zhang X and Cheng X 2012 Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res. 40 4841–4849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hausinger RP 2004 FeII/alpha-ketoglutarate-dependent hydroxylases and related enzymes. Crit. Rev. Biochem. Mol. 39 21–68

    CAS  Google Scholar 

  • He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, et al. 2011 Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333 1303–1307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hon GC, Hawkins RD, Caballero OL, Lo C, Lister R, Pelizzola M, Valsesia A, Ye Z, Kuan S, Edsall LE, et al. 2012 Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res. 22 246–258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hon GC, Song CX, Du T, Jin F, Selvaraj S, Lee AY, Yen CA, Ye Z, Mao SQ, Wang BA, et al. 2014 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol. Cell 56 286–297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, Y, Chavez, L, Chang X, Wang X, Pastor WA, Kang J, Zepeda-Martinez JA, Pape UJ, Jacobsen SE, Peters B and Rao A 2014 Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells. P. Natl. Acad. Sci. USA 111 1361–1366

    CAS  Google Scholar 

  • Huang Y and Rao A 2014 Connections between TET proteins and aberrant DNA modification in cancer. Trends Genet. 30 464–474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue A and Zhang Y 2011 Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 334 194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C and Zhang Y 2011 Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333 1300–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer LM, Abhiman S and Aravind L 2011 Natural history of eukaryotic DNA methylation systems. Prog. Mol. Biol. Transl. Sci. 101 25–104

    CAS  PubMed  Google Scholar 

  • Iyer LM, Tahiliani M, Rao A and Aravind L 2009 Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8 1698–1710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer LM, Zhang D and Aravind L 2016 Adenine methylation in eukaryotes: Apprehending the complex evolutionary history and functional potential of an epigenetic modification. Bioessays 38 27–40

    CAS  PubMed  Google Scholar 

  • Iyer LM, Zhang D, Burroughs AM and Aravind L 2013 Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA. Nucleic Acids Res. 41 7635–7655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer LM, Zhang D, de Souza RF, Pukkila PJ, Rao A and Aravind L 2014 Lineage-specific expansions of TET/JBP genes and a new class of DNA transposons shape fungal genomic and epigenetic landscapes. P. Natl. Acad. Sci. USA 111 1676–1683

    CAS  Google Scholar 

  • Jacob V, Chernyavskaya Y, Chen X, Tan PS, Kent B, Hoshida Y and Sadler KC 2015 DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos. Development 142 510–521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PA and Baylin SB 2002 The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3 415–428

    CAS  PubMed  Google Scholar 

  • Josefowicz SZ, Lu LF and Rudensky AY 2012 Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30 531–564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaelin WG Jr. and McKnight SL 2013 Influence of metabolism on epigenetics and disease. Cell 153 56–69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ko M, An J, Bandukwala HS, Chavez L, Aijo T, Pastor WA, Segal MF, Li H, Koh KP, Lahdesmaki H, et al. 2013 Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature 497 122–126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ko M, An J, Pastor WA, Koralov SB, Rajewsky K and Rao A 2015a TET proteins and 5-methylcytosine oxidation in hematological cancers. Immunol. Rev. 263 6–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ko M, An J and Rao A 2015b DNA methylation and hydroxymethylation in hematologic differentiation and transformation. Curr. Opin. Cell Biol. 37 91–101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, An J, Lamperti ED, Koh KP, Ganetzky R, et al. 2010 Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468 839–843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YJ, Dai N, Walsh SE, Muller S, Fraser ME, Kauffman KM, Guan C, Correa IR Jr. and Weigele PR 2018 Identification and biosynthesis of thymidine hypermodifications in the genomic DNA of widespread bacterial viruses. P. Natl. Acad. Sci. USA 115 E3116–E3125

    CAS  Google Scholar 

  • Lemonnier F, Poullot E, Dupuy A, Couronne L, Martin N, Scourzic L, Fataccioli V, Bruneau J, Cairns RA, Mak TW, et al. 2018 Loss of 5-hydroxymethylcytosine is a frequent event in peripheral T-cell lymphomas. Haematologica 103 e115–e118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leon-Ortiz AM, Svendsen J and Boulton SJ 2014 Metabolism of DNA secondary structures at the eukaryotic replication fork. DNA Repair 19 152–162

    CAS  PubMed  Google Scholar 

  • Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A, Hoadley K, Triche TJ Jr., Laird PW, Baty JD, et al. 2013 Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. The New England Journal of Medicine 368 2059–2074

    PubMed  Google Scholar 

  • Li X, Liang Y, LeBlanc M, Benner C and Zheng Y 2014 Function of a Foxp3 cis-element in protecting regulatory T cell identity. Cell 158 734–748

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Yue X, Pastor WA, Lin L, Georges R, Chavez L, Evans SM and Rao A 2016 Tet proteins influence the balance between neuroectodermal and mesodermal fate choice by inhibiting Wnt signaling. P. Natl. Acad. Sci. USA 113 E8267–E8276

    CAS  Google Scholar 

  • Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, et al. 2009 Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326 289–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lio CJ, Shukla V, Samaniego-Castruita D, Gonzalez-Avalos E, Chakraborty A, Yue X, Schatz DG, Ay F and Rao A 2019 TET enzymes augment activation-induced deaminase (AID) expression via 5-hydroxymethylcytosine modifications at the Aicda superenhancer. Sci. Immunol. 4

  • Lio CW and Hsieh CS 2011 Becoming self-aware: the thymic education of regulatory T cells. Curr. Opin. Immunol. 23 213–219

    CAS  PubMed  Google Scholar 

  • Lio CW, Zhang J, Gonzalez-Avalos E, Hogan PG, Chang X and Rao A 2016 Tet2 and Tet3 cooperate with B-lineage transcription factors to regulate DNA modification and chromatin accessibility. eLife

  • López-Moyado IF, Tsagaratou A, Yuita H, Seo H, Delatte B, Heinz S, Benner C and Rao A 2019 Paradoxical association of TET loss of function with genome-wide DNA hypomethylation. P. Natl. Acad. Sci. USA 34 16933–16942

    Google Scholar 

  • Losman JA and Kaelin WG Jr. 2013 What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate and cancer. Gene. Dev. 27 836–852

    CAS  PubMed  Google Scholar 

  • Lu F, Liu Y, Jiang L, Yamaguchi S and Zhang Y 2014 Role of Tet proteins in enhancer activity and telomere elongation. Gene. Dev. 28 2103–2119

    CAS  PubMed  Google Scholar 

  • Maiti A and Drohat AC 2011 Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J. Biol. Chem. 286 35334–35338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marcais A, Waast L, Bruneau J, Hanssens K, Asnafi V, Gaulard P, Suarez F, Dubreuil P, Gessain A, Hermine O and Pique C 2017 Adult T cell leukemia aggressivenness correlates with loss of both 5-hydroxymethylcytosine and TET2 expression. Oncotarget 8 52256–52268

    PubMed  Google Scholar 

  • Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, et al. 2006 A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer cell 10 515–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Odejide O, Weigert O, Lane AA, Toscano D, Lunning MA, Kopp N, Kim S, van Bodegom D, Bolla S, Schatz JH, et al. 2014 A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood 123 1293–1296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Otani J, Kimura H, Sharif J, Endo TA, Mishima Y, Kawakami T, Koseki H, Shirakawa M, Suetake I and Tajima S 2013 Cell cycle-dependent turnover of 5-hydroxymethyl cytosine in mouse embryonic stem cells. PloS one 8 e82961

    PubMed  PubMed Central  Google Scholar 

  • Palomero T, Couronne L, Khiabanian H, Kim MY, Ambesi-Impiombato A, Perez-Garcia A, Carpenter Z, Abate F, Allegretta M, Haydu JE, et al. 2014 Recurrent mutations in epigenetic regulators RHOA and FYN kinase in peripheral T cell lymphomas. Nat. Genet. 46 166–170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, Potter NE, Heuser M, Thol F, Bolli N, et al. 2016 Genomic classification and prognosis in acute myeloid leukemia. The New England Journal of Medicine 374 2209–2221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pastor WA, Aravind L and Rao A 2013 TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell. Biol. 14 341–356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qu GZ, Grundy PE, Narayan A and Ehrlich M 1999 Frequent hypomethylation in Wilms tumors of pericentromeric DNA in chromosomes 1 and 16. Cancer Genet. Cytogen. 109 34–39

    CAS  Google Scholar 

  • Raffel S, Falcone M, Kneisel N, Hansson J, Wang W, Lutz C, Bullinger L, Poschet G, Nonnenmacher Y, Barnert A, et al. 2017 BCAT1 restricts alphaKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation. Nature 551 384–388

    CAS  PubMed  Google Scholar 

  • Rasmussen KD and Helin K 2016 Role of TET enzymes in DNA methylation development and cancer. Gene. Dev. 30 733–750

    CAS  PubMed  Google Scholar 

  • Rasmussen KD, Jia G, Johansen JV, Pedersen MT, Rapin N, Bagger FO, Porse BT, Bernard OA, Christensen J and Helin K 2015 Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Gene. Dev. 29 910–922

    CAS  PubMed  Google Scholar 

  • Sakaguchi S, Yamaguchi T, Nomura T and Ono M 2008 Regulatory T cells and immune tolerance. Cell 133 775–787

    CAS  PubMed  Google Scholar 

  • Sakata-Yanagimoto M, Enami T, Yoshida K, Shiraishi Y, Ishii R, Miyake Y, Muto H, Tsuyama N, Sato-Otsubo A, Okuno Y, et al. 2014 Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat. Genet. 46 171–175

    CAS  PubMed  Google Scholar 

  • Sasaki M, Knobbe CB, Munger JC, Lind EF, Brenner D, Brustle A, Harris IS, Holmes R, Wakeham A, Haight J, et al. 2012 IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 488 656–659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasidharan Nair V, Song MH and Oh KI 2016 Vitamin C facilitates demethylation of the Foxp3 enhancer in a Tet-dependent manner. J. Immunol. 196 2119–2131

    CAS  PubMed  Google Scholar 

  • Schiesser S, Hackner B, Pfaffeneder T, Muller M, Hagemeier C, Truss M and Carell T 2012 Mechanism and stem-cell activity of 5-carboxycytosine decarboxylation determined by isotope tracing. Angew. Chem. Int. Ed. Engl. 51 6516–6520

    CAS  PubMed  Google Scholar 

  • Schuster-Bockler B and Lehner B 2012 Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 488 504–507

    PubMed  Google Scholar 

  • Suzuki T, Fujii M and Ayusawa D 2002 Demethylation of classical satellite 2 and 3 DNA with chromosomal instability in senescent human fibroblasts. Exp. Gerontol. 37 1005–1014

    CAS  PubMed  Google Scholar 

  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L and Rao A 2009 Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324 930–935

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thijssen PE, Ito Y, Grillo G, Wang J, Velasco G, Nitta H, Unoki M, Yoshihara M, Suyama M, Sun Y, et al. 2015 Mutations in CDCA7 and HELLS cause immunodeficiency-centromeric instability-facial anomalies syndrome. Nat. Commun. 6 7870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsagaratou A, Aijo T, Lio CW, Yue X, Huang Y, Jacobsen SE, Lahdesmaki H and Rao A 2014 Dissecting the dynamic changes of 5-hydroxymethylcytosine in T-cell development and differentiation. P. Natl. Acad. Sci. USA 111 E3306–3315

    CAS  Google Scholar 

  • Tsagaratou A, Gonzalez-Avalos E, Rautio S, Scott-Browne JP, Togher S, Pastor WA, Rothenberg EV, Chavez L, Lahdesmaki H and Rao A 2017 TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells. Nat. Immunol. 18 45–53

    CAS  PubMed  Google Scholar 

  • Tsuda H, Takarabe T, Kanai Y, Fukutomi T and Hirohashi S 2002 Correlation of DNA hypomethylation at pericentromeric heterochromatin regions of chromosomes 16 and 1 with histological features and chromosomal abnormalities of human breast carcinomas. The American Journal of Pathology 161 859–866

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Steensel B and Belmont AS 2017 Lamina-associated domains: Links with chromosome architecture heterochromatin and gene Repression. Cell 169 780–791

    PubMed  PubMed Central  Google Scholar 

  • Wu D, Hu D, Chen H, Shi G, Fetahu IS, Wu F, Rabidou K, Fang R, Tan L Xu S, et al. 2018 Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature 559 637–641

  • Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, Liu L, Liu Y, Yang C, Xu Y, et al. 2012 Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Gene. Dev. 26 1326–1338

    CAS  PubMed  Google Scholar 

  • Xue J-H, Chen G-D, Hao F, Chen H, Fang Z, Chen F-F, Pang B, Yang Q-L, Wei X, Fan Q-Q, et al. 2019 A vitamin-C-derived DNA modification catalysed by an algal TET homologue. Nature 569 581–585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang R, Qu C, Zhou Y, Konkel JE, Shi S, Liu Y, Chen C, Liu S, Liu D, Chen Y, et al. 2015 Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis. Immunity 43 251–263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Genest PA, ter Riet B, Sweeney K, DiPaolo C, Kieft R, Christodoulou E, Perrakis A, Simmons JM, Hausinger RP, et al. 2007 The protein that binds to DNA base J in trypanosomatids has features of a thymidine hydroxylase. Nucleic Acids Res. 35 2107–2115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yue X, Trifari S, Aijo T, Tsagaratou A, Pastor WA, Zepeda-Martinez JA, Lio CW, Li X, Huang Y, Vijayanand P, et al. 2016 Control of Foxp3 stability through modulation of TET activity. The Journal of Experimental Medicine 213 377–397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Chen W, Iyer LM, Hu J, Wang G, Fu Y, Yu M, Dai Q, Aravind L and He C 2014 A TET homologue protein from Coprinopsis cinerea (CcTET) that biochemically converts 5-methylcytosine to 5-hydroxymethylcytosine 5-formylcytosine and 5-carboxylcytosine. J. Am. Chem. Soc. 136 4801–4804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Su J, Jeong M, Ko M, Huang Y, Park HJ, Guzman A, Lei Y, Huang YH, Rao A, et al. 2016 DNMT3A and TET2 compete and cooperate to repress lineage-specific transcription factors in hematopoietic stem cells. Nat. Genet. 48 1014–1023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K and Rudensky AY 2010 Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463 808–812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Dinh HQ, Ramjan Z, Weisenberger DJ, Nicolet CM, Shen H, Laird PW and Berman BP 2018 DNA methylation loss in late-replicating domains is linked to mitotic cell division. Nat. Genet. 50 591–602

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank all current and previous Rao lab members for their work on published papers cited in this review, and for their inputs and many stimulating discussions over the years. We also thank the Flow Cytometry and Functional Genomics cores at the La Jolla Institute for Immunology for cell sorting and next-generation sequencing. This work was supported by National Institutes of Health (NIH) Grants R01 AI128589 and R35 CA210043 (to A.R). C.W.L. was supported by the Independent Investigator Fund (La Jolla Institute/Kyowa Kirin) and the Irvington Postdoctoral Fellowship from the Cancer Research Institute. I.F.L.-M. was supported by a University of California Institute for Mexico and the United States–Consejo Nacional de Ciencia y Tecnología Fellowship. L.A. is supported by the intramural funds of the National Library of Medicine, NIH, USA. M.T. was supported by the Packard Fellowship for Science and Engineering. Funding for Illumina HiSeq 2500 and BD FACSAria II is supported by NIH (NIH S10OD016262 and NIH S10RR027366).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Rao.

Ethics declarations

Conflict of interest

AR is on the scientific advisory board of Cambridge Epigenetix (Cambridge, UK). The other authors declare no competing interests.

Additional information

This article is part of the Topical Collection: Chromatin Biology and Epigenetics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lio, CW.J., Yue, X., López-Moyado, I.F. et al. TET methylcytosine oxidases: new insights from a decade of research. J Biosci 45, 21 (2020). https://doi.org/10.1007/s12038-019-9973-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12038-019-9973-4

Keywords

Navigation