Skip to main content
Log in

Interrelation of Ca2+ and PE_PGRS proteins during Mycobacterium tuberculosis pathogenesis

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

In today’s era tuberculosis is a major threat to human population. The lethality of this disease is caused by very efficiently thrived bacteria Mycobacterium tuberculosis (M. tuberculosis). Ca2+ plays crucial role in maintenance of cellular homeostasis. Bacilli survival in human alveolar macrophages majorly depends on disruption in Ca2+ signaling. Bacilli sustainability in phagosome lies in the interruption of phagolysosomal fusion, which is possible because of low intracellular Ca2+ concentration. Bacilli contain various Ca2+ binding proteins which help in regulation of Ca2+ signaling for its own benefit. For the survival of pathogen, it requires alteration in normal Ca2+ concentration in healthy cell. In this review we aim to find the various Ca2+ binding domains which are present in several Ca2+ binding proteins of M. tuberculosis and variety of roles played by Ca2+ to survive bacilli within host cell. This manuscript emphasizes the Ca2+ binding domains present in PE_PGRS group of gene family and their functionality in M. tuberculosis survival and pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Similar content being viewed by others

Abbreviations

Ca2+ :

calcium ions

CAMLP:

calmodulin-like proteins

M. tuberculosis :

Mycobacterium tuberculosis

PE:

Pro-Glu sequence

PE_PGRS:

proline-glutamic polymorphic GC-rich repetitive sequence

TB:

tuberculosis.

References

  • Antony C, Mehto S, Tiwari BK, Singh Y and Natarajan K 2015 regulation of l-type voltage gated calcium channel CACNA1S in macrophages upon Mycobacterium tuberculosis infection. PLOS One 10 e0124263

    Article  Google Scholar 

  • Aravind P, Mishra A, Suman SK, Jobby MK, Sankaranarayanan R and Sharma Y 2009 The beta gamma-crystallin superfamily contains a universal motif for binding calcium. Biochemistry 48 12180–12190

    Article  CAS  Google Scholar 

  • Arockiasamy A, Holzenburg A, Aggarwal A, Savva CG and James C 2011 Sacchettini crystal structure of calcium dodecin (Rv0379), from Mycobacterium tuberculosis with a unique calcium-binding site. Protein Sci. 20 827–833

    Article  CAS  Google Scholar 

  • Bachhawat N and Singh B 2007 Mycobacterial PE PGRS proteins contain calcium-binding motifs with parallel β-roll folds. Genomics Proteomics Bioinformatics 5 236–241

    Article  CAS  Google Scholar 

  • Banerjee C, Khatri P, Raman R, Bhatia H, Datta M and Mazumder S 2014 Role of calmodulin calmodulin kinase II, camp/protein kinase a and Erk 1/2 on Aeromonas hydrophila-induced apoptosis of head kidney macrophages. PLoS Pathog. 10 e1004018

    Article  Google Scholar 

  • Barnham KJ, McKinstry WJ, Multhaup G, Galatis D, Morton CJ, Curtain CC, Williamson NA, White AR, Hinds MG, Norton RS, Beyreuther K, Masters CL, Parker MW and Cappai R 2003 Structure of the Alzheimer’s disease amyloid precursor protein copper binding domain. A regulator of neuronal copper homeostasis. J. Biol. Chem. 278 17401–17407

    Article  CAS  Google Scholar 

  • Baumann U, Wu S, Flaherty KM and McKay DB 1993 Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J. 12 3357–3364

    Article  CAS  Google Scholar 

  • Berridge MJ, Bootman MD and Roderick HL 2003 Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell. Biol. 4 517–529

    Article  CAS  Google Scholar 

  • Berridge MJ, Lipp P and Bootman MD 2000 The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell. Biol. 1 11–21

    Article  CAS  Google Scholar 

  • Bilecen K and Yildiz FH 2009 Identification of a calcium-controlled negative regulatory system affecting Vibrio cholera biofilm formation. Environ. Microbiol. 11 2015–2029

    Article  CAS  Google Scholar 

  • Brennan MJ and Delogu G 2002 The PE multigene family: a ‘molecular mantra’ for mycobacteria. Trends Microbiol. 10 246–249

    Article  CAS  Google Scholar 

  • Burra SS, Reddy PH and Murthy PS 1995 Effect of some antitubercular drugs on the calmodulin content of Mycobacterium tuberculosis. Ind. J. Clin. Biochem. 10 126–128

    Article  Google Scholar 

  • Burra SS, Reddy PH, Falah SM, Venkitasubramanian TA and Murthy PS 1991 calmodulin-like protein and the phospholipids of Mycobacterium smegmatis. FEMS Microbiol. Lett. 64 189–194

    Article  CAS  Google Scholar 

  • Chadha A, Mehto S, Selvakumar A, Vashishta V, Kamble SS, Popli S, Raman R, Singh Y and Natarajan K 2015 Suppressive role of neddylation in dendritic cells during Mycobacterium tuberculosis infection. Tuberculosis 95 599–607

    Article  CAS  Google Scholar 

  • Cheung W Y 1982 Calmodulin: an overview. Fed. Proc. 41 2253

    CAS  PubMed  Google Scholar 

  • Clapham DE 2007 Calcium Signaling. Cell 131 1047–1058

    Article  CAS  Google Scholar 

  • Cole ST 1999 Learning from the genome sequence of Mycobacterium tuberculosis H37Rv. FEBS Lett. 452 7–10

    Article  CAS  Google Scholar 

  • Coote JG 1992 Structural and functional relationships among the RTX toxin determinants of Gram negative bacteria. FEMS Microbiol. Rev. 8 137–161

    Article  CAS  Google Scholar 

  • Copin R, Coscollá M,Seiffert SN, Bothamley G, Sutherland J, Mbayo G, Sebastien Gagneux S and Ernst JD 2014 Sequence diversity in the PE_PGRS genes of Mycobacterium tuberculosis is independent of human T cell recognition. mBio 5 e00960–13

  • Datta D, Khatri P, Banerjee C, Singh A, Meena R, Saha DR, Raman R, Rajamani P, Mitra A and Mazumder S 2016 calcium and superoxide-mediated pathways converge to induce nitric oxide-dependent apoptosis in Mycobacterium fortuitum infected fish macrophages. PLoS One 11 e0146554

    Article  Google Scholar 

  • Delogu G, Pusceddu C, Bua A, Fadda G, Brennan MJ and Zanetti S 2004 Rv1818c-encoded PE PGRS protein of Mycobacterium tuberculosis is surface exposed and influences bacterial cell structure. Mol. Microbiol. 52 725–733

    Article  CAS  Google Scholar 

  • Dheenadhalayan V, Delogu G, and Brennan MJ 2006 Expression of the PE_PGRS 33 protein in Mycobacterium smegmatis triggers necrosis in macrophages and enhanced mycobacterial survival. Microbes Infect. 8 262–272

    Article  Google Scholar 

  • Dominguez DC 2011 Proteome analysis of B. subtilis in response to calcium. J. Anal. Bioanal. Tech. https://doi.org/10.4172/2155-9872.s6-001

    Article  Google Scholar 

  • Falah AMS, Bhatnagar R, Bhatnagar N, Singh Y, Sidhu GS, Murthy PS and Venkitasubramanian TA 1988 On the presence of calmodulin-like protein in mycobacteria. FEMS Microbiol. Lett. 56 89–93

    Article  CAS  Google Scholar 

  • Ferrari G, Langen H, Naito M and Pieters J 1999 A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97 435–447

    Article  CAS  Google Scholar 

  • Fry IJ, Villa L, Kuehn GD and Hageman JH 1986 Calmodulin-Like Protein from Bacillus subtilis. Biochem. Biophys. Res. Commun. 134 212–217

    Article  CAS  Google Scholar 

  • Gangola P and Rosen BP 1987 Maintenance of intracellular calcium in Escherichia coli. J. Biol. Chem. 262 12570–12574

    CAS  PubMed  Google Scholar 

  • Gilabert JA 2012 Cytoplasmic calcium buffering. Adv. Exp. Med. Biol. 740 483–98

    Article  CAS  Google Scholar 

  • Global Tuberculosis Report 2017 World Health Organization http://www.who.int/tb/publications/global_report/MainText_13Nov2017.pdf?ua=1

  • Halaby DM, Poupon A and Mornon J 1999 The immunoglobulin fold family: sequence analysis and 3D structure comparisons. Protein Eng. 12 563–571

    Article  CAS  Google Scholar 

  • Harmon, AC, Prasher D and Cormier MJ 1985 High Affinity Calcium Binding proteins in Escherichia coli. Biochem. Biophys. Res. Commun. 127 31–36

    Article  CAS  Google Scholar 

  • Hashimoto K and Kudla J 2011 Calcium decoding mechanisms in plants. Biochimie 93 2054–2059

    Article  CAS  Google Scholar 

  • Huang DT, Miller DW, Mathew R, Cassell R, Holton JM, Roussel MF and Schulman BA 2004 A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8. Nat. Struct. Mol. Biol. 11 927e35

  • Ikura M, Osawa M and Ames JB 2002 The role of calcium-binding proteins in the control of transcription: structure to function. BioEssays 24 625–636

    Article  CAS  Google Scholar 

  • Jayachandran R, Sundaramurthy V, Combaluzier B, Korf H, Huygen K, Miyazaki T, Albrecht I, Massner J and Pieters J 2007 Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell 130 37–50

    Article  CAS  Google Scholar 

  • Jones HE, Holland IB, Baker HL and Campbell AK 1999 Slow changes in cytosolic free Ca2+ in Escherichia coli highlight two putative influx mechanisms in response to changes in extracellular calcium. Cell Calcium 25 265–74

    Article  CAS  Google Scholar 

  • Koul A, Herget T, Klebl B and Ullrich A 2004 Interplay between mycobacteria and host signalling pathways. Nat. Rev. Microbiol. 2 189–202

    Article  CAS  Google Scholar 

  • Koul S, Somayajulu A, Advani MJ and Reddy H 2009 A novel calcium binding protein in Mycobacterium tuberculosis- potential target of trifluoperazine. Ind. J Exp. Biol. 47 480–488

    CAS  Google Scholar 

  • Kretsinger RH 1976 Calcium-binding proteins. Annu. Rev. Biochem. 45 239–266

    Article  CAS  Google Scholar 

  • Kumari P and Meena LS 2014 Factors affecting susceptibility to Mycobacterium tuberculosis: a close view of immunological defence mechanism. Appl. Biochem. Biotechnol. 174 2663–73

    Article  CAS  Google Scholar 

  • Lilie, H, Haehnel W, Rudolph R and Baumann U 2000 Folding of a synthetic parallel beta-roll protein. FEBS Lett. 470 173–177

    Article  CAS  Google Scholar 

  • Lin YP, Raman R, Sharma Y and Chang YF 2008 Calcium binds to leptospiral immunoglobulin-like protein, LigB, and modulates fibronectin binding. J Biol. Chem 283 25140–25149

    Article  CAS  Google Scholar 

  • Majeed M, Perskvist N, Ernst JD, Orselius K and Stendahl O 1998 Roles of calcium and annexins in phagocytosis and elimination of an attenuated strain of Mycobacterium tuberculosis in human neutrophils. Microb. Pathog. 24 309–320

    Article  CAS  Google Scholar 

  • Malik ZA, Denning GM and Kusner DJ 2000 Inhibition of Ca(2+) signaling by Mycobacterium tuberculosis is associated with reduced phagosome-lysosome fusion and increased survival within human macrophages. J. Exp. Med. 191 287–302

    Article  CAS  Google Scholar 

  • Meena LS 2015 An overview to understand the role of PE_PGRS family proteins in Mycobacterium tuberculosis H37Rv and their potential as new drug target. IUBMB 62 145–153

    CAS  Google Scholar 

  • Meena LS and Meena J 2016 Cloning and Characterization of a novel PE_PGRS60 protein (Rv3652) of Mycobacterium tuberculosis H37Rv, exhibiting fibronectin binding property. Biotechnol. Appl. Biochem. 63 531

  • Meena LS and Rajni 2010 Survival mechanisms of pathogenic Mycobacterium tuberculosis H37Rv. FEBS J. 277 2416–2427

    Article  CAS  Google Scholar 

  • Meena PR, Monu and Meena LS 2016 Fibronectin binding protein and Ca2+ play an access key role to mediate pathogenesis in Mycobacterium tuberculosis; An overview. Biotechnol. Appl. Biochem. 63 820–826

    Article  CAS  Google Scholar 

  • Michiels J, Xi C, Verhaert J and Vanderleyden J 2002 The functions of Ca in bacteria: a role for EF-hand proteins? Trends Microbiol. 10 87–93

    Article  CAS  Google Scholar 

  • Monu and Meena LS 2016 Biochemical characterization of PE_PGRS61 family protein of M. tuberculosis H37Rv reveals the binding ability to Fibronectin, Iran. J. Basic. Med. Sci. 19 1105–1113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naseem R, Wann KT, Holland IB and Campbell AK 2009 ATP regulates calcium efflux and growth in E. coli. J Mol. Biol. 391 42–56

    Article  CAS  Google Scholar 

  • Nejatbakhsh N and Feng ZP 2011 Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases. Acta Pharmacol. Sin. 32 741–748

    Article  CAS  Google Scholar 

  • NYU Langone Medical Center/New York University School of Medicine 2015 unexpected role for calcium in controlling inflammation during chronic lung infection www.sciencedaily.com/releases/2015/

  • Oomes SJ, Jonker MJ, Wittink FR, Hehenkamp JO, Breit TM and Brul S 2009 The effect of calcium on the transcriptome of sporulating B. subtilis cells. Int. J Food. Microbiol. 133 234–242

    Article  CAS  Google Scholar 

  • Patrauchan MA, Sarkisova SA and Franklin MJ 2007 Strain-specific proteome responses of Pseudomonas aeruginosa to biofilm-associated growth and to calcium. Microbiology 153 3838–3851

    Article  CAS  Google Scholar 

  • Permyakov EA and Kretsinger RH 2009 Cell signaling, beyond cytosolic calcium in eukaryotes. J. Inorg. Biochem. 103 77–86

    Article  CAS  Google Scholar 

  • Podobnik M, Tyagi R, Matange N, Dermol U, Gupta AK, Mattoo R, Seshadri K and Visweswariah SS 2009 A mycobacterial cyclic AMP phosphodiesterase that moonlights as a modifier of cell wall permeability. J. Biol. Chem. 284 32846–32857

    Article  CAS  Google Scholar 

  • Poulet S and Cole ST 1995 Characterization of the highly abundant polymorphic GC-rich-repetitive sequence (PGRS) present in Mycobacterium tuberculosis. Arch. Microbiol. 163 87–95

    Article  CAS  Google Scholar 

  • Ramakrishnan L, Federspiel NA and Falkow S 2000 Granuloma specific expression of mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science 288 1436–1439

    Article  CAS  Google Scholar 

  • Raman R, Sharma Y and Chang YF 2011 Ca-binding and spectral properties of the common region of surface-exposed Lig proteins of leptospira. Commun. Integr. Biol. 4 331–333

    Article  CAS  Google Scholar 

  • Reddy PH, Burra SS and Murthy PS 1992 Correlation between calmodulin-like protein, phospholipids, and growth in glucose-grown Mycobacterium phlei. Can. J. Microbiol. 38 339–342

    Article  CAS  Google Scholar 

  • Rigden DJ and Galperin MY 2004 The DxDxDG motif for calcium binding: Multiple structural contexts and implications for evolution. J. Mol. Biol. 343 971–984

    Article  CAS  Google Scholar 

  • Rigden DJ, Jedrzejas MJ, Moroz OV and Galperin MY 2003 Structural diversity of calcium-binding proteins in bacteria: single-handed EF-hands? Trends Microbiol. 11 295–297

    Article  CAS  Google Scholar 

  • Sachdeva G, Kumar K, Jain P and Ramachandran S 2005 SPAAN: a software program for prediction of adhesins and adhesin-like proteins using neural networks. Bioinformatics 21 483 491

    Google Scholar 

  • Sanders D, Brownlee C and Harper JF 1999 Communicating with calcium. Plant Cell 11 691–706

    Article  CAS  Google Scholar 

  • Sharma S and Meena LS 2017 Potential of Ca2+ in Mycobacterium tuberculosis H 37 Rv pathogenesis and survival. Appl. Biochem. Biotechnol 181 762–771

    Article  CAS  Google Scholar 

  • Shaw S and Meena LS 2016 FnBPs: An effective adhesion molecule in Mycobacterium tuberculosis pathogenesis. MRJMMS 4 448–450

    Google Scholar 

  • Shenoy AR, Capuder M, Draskovic P, Lamba D, Visweswariah SS and Podobnik M 2007 Structural and biochemical analysis of the Rv0805 cyclic nucleotide phosphodiesterase from Mycobacterium tuberculosis. J. Mol. Biol. 365 211–225

    Article  CAS  Google Scholar 

  • Srivastava SS, Mishra A, Krishnan B and Sharma Y 2014 Ca2+ binding motif of beta gamma crystallins. J. Biol. Chem. 289 10958–10966

    Article  CAS  Google Scholar 

  • Tekaia F, Gordon SV, Garnier T, Brosch R, Barrell BG and Cole ST 1999 Analysis of the proteome of Mycobacterium tuberculosis in silico. Tuberc. Lung. Dis. 79 329–342

    Article  CAS  Google Scholar 

  • Torrecilla I, Leganes F, Bonilla I and Fernandez-Pinas F 2000 Use of recombinant aequorin to study calcium homeostasis and monitor calcium transients in response to heat and cold shock in cyanobacterial. Plant Physiol. 123 161–175

    Article  CAS  Google Scholar 

  • Trimble WS and Grinstein S 2007 TB or not TB: Calcium Regulation in Mycobacterial survival. Cell 130 12–14

    Article  CAS  Google Scholar 

  • Vergne I, Chua J and Deretic V 2003 tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hvps34 cascade. J. Exp. Med. 198 653–659

    Article  Google Scholar 

  • Wistow G 1990 Evolution of a protein superfamily: relationships between vertebrate lens crystallins and microorganism dormancy proteins. J. Mol. Biol. 30 140–145

    CAS  Google Scholar 

  • Yadav M, Roach SK and Schorey JS 2004 Increased mitogen-activated protein kinase activity and tnf-production associated with Mycobacterium smegmatis but not Mycobacterium avium infected macrophages requires prolonged stimulation of the calmodulin/calmodulin kinase and cyclic amp/protein kinase a pathways. J. Immunol. 172 5588–5597

    Article  CAS  Google Scholar 

  • Yang K 2001 Prokaryotic calmodulins: recent developments and evolutionary implications. J. Mol. Microbiol. Biotechnol. 3 457–459

    CAS  PubMed  Google Scholar 

  • Yeruva VC, Kulkarni A, Khandelwal R, Sharma Y and Raghunand TR 2016 The PE_PGRS proteins of Mycobacterium tuberculosis are Ca2+ binding mediators of host-pathogen interaction. Biochemistry 55 4675–4687

    Article  CAS  Google Scholar 

  • Zampese E and Pizzo P 2012 Intracellular organelles in the saga of Ca homeostasis: different molecules for different purposes? Cell. Mol. Life. Sci. 69 1077–1104

    Article  CAS  Google Scholar 

  • Zhou Y, Yang W, Kirberger M, Lee HW, Ayalasomayajula G and Yang JJ 2006 Prediction of EF-hand calcium-binding proteins and analysis of bacterial EF-hand proteins. Proteins 65 643–655

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from GAP0145 of the Department of Science and Technology and the Council of Scientific and Industrial Research, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laxman S Meena.

Additional information

Communicated by BJ RAO.

Corresponding editor: BJ Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, L.S. Interrelation of Ca2+ and PE_PGRS proteins during Mycobacterium tuberculosis pathogenesis. J Biosci 44, 24 (2019). https://doi.org/10.1007/s12038-018-9828-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-018-9828-4

Keywords

Navigation