Skip to main content
Log in

Ursolic acid stimulates UCP2 expression and protects H9c2 cells from hypoxia-reoxygenation injury via p38 signaling

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Oxidative stress and apoptosis is involved in hypoxia-reoxygenation (H/R) induced myocardial injury. Increased expression of uncoupling protein 2 (UCP2), a cationic carrier protein, has protective effect against H/R injury. The present study aimed to find candidate drugs for H/R induced cardiac damage by identifying compounds regulating UCP2 expression. Here, among six natural compounds, ursolic acid (UA) had the most significant induction effect on UCP2 expression in H9c2 cells under H/R conditions. Subsequently, we found that UA significantly attenuated cell apoptosis and Caspase 3 activity, but increased nitric oxide (NO) release under H/R conditions. Additionally, UA pretreatment also decreased reactive oxygen species (ROS) production and malondialdehyde (MDA) content, but increased superoxide dismutase (SOD) activity. H/R caused a notable increase in the phosphorylation of p38, which was weakened by UA pretreatment. Moreover, p38 inhibitor (SB203580) showed the similar effects on H/R cells as UA pretreatment, while UCP2 knockdown had the reverse biological effects. More importantly, the effects of UA or p38 inhibitor exposure were partially rescued by UCP2 knockdown. Collectively, our data suggested the functions of UA on UCP2 expression and on the protection of H/R-stimulated H9c2 cells may be attributed to p38 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Angeloni C, Spencer J, Leoncini E, Biagi P and Hrelia S 2007 Role of quercetin and its in vivo metabolites in protecting H9c2 cells against oxidative stress. Biochimie 89 73–82

    Article  CAS  Google Scholar 

  • Anu P, Mockridge JW, Farooqui S, Marber MS and Richard J 2000 Sustained activation of p42/p44 mitogen-activated protein kinase during recovery from simulated ischaemia mediates adaptive cytoprotection in cardiomyocytes. Biochem. J. 350 891–899

    Article  Google Scholar 

  • Ayyasamy V, Owens KM, Desouki MM, Liang P, Bakin A, Thangaraj K, Buchsbaum DJ, LoBuglio AF, et al. 2011 Cellular model of Warburg effect identifies tumor promoting function of UCP2 in breast cancer and its suppression by genipin. PLoS ONE 6 e24792

    Article  CAS  Google Scholar 

  • Blanc J, Alves-Guerra M, Esposito B, Rousset S, Gourdy P, Ricquier D, Tedgui A, Miroux B, et al. 2003 Protective role of uncoupling protein 2 in atherosclerosis. Circulation 107 388–390

    Article  CAS  Google Scholar 

  • Bolli R, Dawn B and Xuan Y-T 2003 Role of the JAK–STAT pathway in protection against myocardial ischemia/reperfusion injury. Trends Cardiovasc. Med. 13 72–79

    Article  CAS  Google Scholar 

  • Capano M and Crompton M 2006 Bax translocates to mitochondria of heart cells during simulated ischaemia: involvement of AMP-activated and p38 mitogen-activated protein kinases. Biochem. J. 395 57–64

    Article  CAS  Google Scholar 

  • Derdák Z, Fülöp P, Sabo E, Tavares R, Berthiaume EP, Resnick MB, Paragh G, Wands JR, et al. 2006 Enhanced colon tumor induction in uncoupling protein-2 deficient mice is associated with NF-κB activation and oxidative stress. Carcinogenesis 27 956–961

    Article  Google Scholar 

  • Diano S and Horvath TL 2012 Mitochondrial uncoupling protein 2 (UCP2) in glucose and lipid metabolism. Trends Mol. Med. 18 52–58

    Article  CAS  Google Scholar 

  • Emre Y, Hurtaud C, Nübel T, Criscuolo F, Ricquier D and Cassard-Doulcier A-M 2007 Mitochondria contribute to LPS-induced MAPK activation via uncoupling protein UCP2 in macrophages. Biochem. J. 402 271–278

    Article  CAS  Google Scholar 

  • Engelbrecht A-M, Niesler C, Page C and Lochner A 2004 p38 and JNK have distinct regulatory functions on the development of apoptosis during simulated ischaemia and reperfusion in neonatal cardiomyocytes. Basic Res. Cardiol. 99 338–350

    Article  CAS  Google Scholar 

  • Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi-Meyrueis C, Bouillaud F, Seldin MF, et al. 1997 Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat. Genet. 15 269–272

    Article  CAS  Google Scholar 

  • Gao F, Gao E, Yue T-L, Ohlstein EH, Lopez BL, Christopher TA and Ma X-L 2002 Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion. Circulation 105 1497–1502

    Article  CAS  Google Scholar 

  • Garlid KD, Jabůrek M, Ježek P and Vařecha M 2000 How do uncoupling proteins uncouple? Biochim. Biophys. Acta Bioenerg. 1459 383–389

    Article  CAS  Google Scholar 

  • Gustafsson ÅB and Gottlieb RA 2009 Autophagy in ischemic heart disease. Circ. Res. 104 150–158

    Article  CAS  Google Scholar 

  • He B, Chen P, Yang L, Zhang X, Ji F and Shen Z 2009 Protective effects of 20 (R)-ginsenoside Rg3 on human umbilical vein endothelial cell injury induced by LPS. Chin. Pharmaceut. J. 44 1703–1707

    CAS  Google Scholar 

  • Ikeda Y, Murakami A and Ohigashi H 2008 Ursolic acid: An anti‐and pro‐inflammatory triterpenoid. Mol. Nutr. Food Res. 52 26–42

    Article  CAS  Google Scholar 

  • Jeong JJ, Ha YM, Jin YC, Lee EJ, Kim JS, Kim HJ, Seo HG, Lee JH, et al. 2009 Rutin from Lonicera japonica inhibits myocardial ischemia/reperfusion-induced apoptosis in vivo and protects H9c2 cells against hydrogen peroxide-mediated injury via ERK1/2 and PI3K/Akt signals in vitro. Food Chem. Toxicol. 47 1569–1576

    Article  CAS  Google Scholar 

  • Kashyap D, Tuli HS and Sharma AK 2016 Ursolic acid (UA): a metabolite with promising therapeutic potential. Life Sci. 146 201–213

    Article  CAS  Google Scholar 

  • Keeley EC, Boura JA and Grines CL 2003 Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet 361 13–20

    Article  Google Scholar 

  • Li G, Zhang X, You J, Song C, Sun Z, Xia L and Suo Y 2011 Highly sensitive and selective pre-column derivatization high-performance liquid chromatography approach for rapid determination of triterpenes oleanolic and ursolic acids and application to Swertia species: optimization of triterpenic acids extraction and pre-column derivatization using response surface methodology. Anal Chim. Acta 688 208–218

    Article  CAS  Google Scholar 

  • Luo H, Yuan S, Xiao J and Guo H 1997 Experimental study on the effect of ligustrazine on cultured vascular smooth muscle cells proliferation. West China J. Pharmaceut. Sci. 12 6–7

    CAS  Google Scholar 

  • McCord JM and Edeas MA 2005 SOD, oxidative stress and human pathologies: a brief history and a future vision. Biomed. Pharmacother. 59 139–142

    Article  CAS  Google Scholar 

  • McLeod CJ, Aziz A, Hoyt RF, McCoy JP and Sack MN 2005 Uncoupling proteins 2 and 3 function in concert to augment tolerance to cardiac ischemia. J. Biol. Chem. 280 33470–33476

    Article  CAS  Google Scholar 

  • Moukdar F, Robidoux J, Lyght O, Pi J, Daniel KW and Collins S 2009 Reduced antioxidant capacity and diet-induced atherosclerosis in uncoupling protein-2-deficient mice. J. Lipid Res. 50 59–70

    Article  CAS  Google Scholar 

  • Pires ENS, Frozza RL, Hoppe JB, de Melo Menezes B and Salbego CG 2014 Berberine was neuroprotective against an in vitro model of brain ischemia: survival and apoptosis pathways involved. Brain Res. 1557 26–33

    Article  Google Scholar 

  • Ricquier D and Bouillaud F 2000 The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem. J. 345 161–179

    Article  CAS  Google Scholar 

  • Rousset S, Emre Y, Join-Lambert O, Hurtaud C, Ricquier D and Cassard-Doulcier A-M 2006 The uncoupling protein 2 modulates the cytokine balance in innate immunity. Cytokine 35 135–142

    Article  CAS  Google Scholar 

  • Rupprecht A, Bräuer AU, Smorodchenko A, Goyn J, Hilse KE, Shabalina IG, Infante-Duarte C and Pohl EE 2012 Quantification of uncoupling protein 2 reveals its main expression in immune cells and selective up-regulation during T-cell proliferation. PLoS ONE 7 e41406

    Article  CAS  Google Scholar 

  • Seidlmayer LK, Juettner VV, Kettlewell S, Pavlov EV, Blatter LA and Dedkova EN 2015 Distinct mPTP activation mechanisms in ischaemia-reperfusion: contributions of Ca2+, ROS, pH, and inorganic polyphosphate. Cardiovasc. Res. 106 237–248

    Article  CAS  Google Scholar 

  • Selimovic D, Hassan M, Haikel Y and Hengge UR 2008 Taxol-induced mitochondrial stress in melanoma cells is mediated by activation of c-Jun N-terminal kinase (JNK) and p38 pathways via uncoupling protein 2. Cell Signal 20 311–322

    Article  CAS  Google Scholar 

  • Shi-Guang W, Yan X, Hao X, Wei W and Xiao-Hu C 2015 Astragaloside IV prevents lipopolysaccharide-induced injury in H9C2 cardiomyocytes. Chin. J. Nat. Med. 13 127–132

    Google Scholar 

  • Shin EJ, Schram K, Zheng Xl and Sweeney G 2009 Leptin attenuates hypoxia/reoxygenation‐induced activation of the intrinsic pathway of apoptosis in rat H9c2 cells. J. Cell Physiol. 221 490–497

    Article  CAS  Google Scholar 

  • Sun, L, Isaak CK, Zhou Y, Petkau JC, Karmin O, Liu Y and Siow YL 2012 Salidroside and tyrosol from Rhodiola protect H9c2 cells from ischemia/reperfusion-induced apoptosis. Life Sci. 91 151–158

    Article  CAS  Google Scholar 

  • Teshima Y, Akao M, Jones SP and Marbán E 2003 Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ. Res. 93 192–200

    Article  CAS  Google Scholar 

  • Tsai SJ and Yin MC 2008 Antioxidative and anti-inflammatory protection of oleanolic acid and ursolic acid in PC12 cells. J. Food Sci. 73 H174–H178

    Article  CAS  Google Scholar 

  • Uchida K 1999 Current status of acrolein as a lipid peroxidation product. Trends Cardiovasc. Med. 9 109–113

    Article  CAS  Google Scholar 

  • Wang Y-J, Lu J, Wu D-M, Zheng Z-H, Zheng Y-L, Wang X-H, Ruan J, Sun X, et al. 2011 Ursolic acid attenuates lipopolysaccharide-induced cognitive deficits in mouse brain through suppressing p38/NF-κB mediated inflammatory pathways. Neurobiol. Learn. Mem. 96 156–165

    Article  CAS  Google Scholar 

  • Wu H-J, Hao J, Wang S-Q, Jin B-L and Chen X-B 2012 Protective effects of ligustrazine on TNF-α-induced endothelial dysfunction. Eur. J. Pharmacol. 674 365–369

    Article  CAS  Google Scholar 

  • Yu H-H, Hur J-M, Seo S-J, Moon H-D, Kim H-J, Park R-K and You Y-O 2009 Protective effect of ursolic acid from Cornus officinalis on the hydrogen peroxide-induced damage of HEI-OC1 auditory cells. Am. J. Chin. Med. 37 735–746

    Article  CAS  Google Scholar 

  • Zhi-Juan WU, Jing YU, Wang RX, Fang QJ and Lin MJ 2014 Protective effect of ferulic acid on doxorubicin induced cellular injury in H9c2 myocardial cells. Chin. Pharmacol. Bull. 30 1059–1065

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhou.

Additional information

Communicated by Sorab Dalal.

Corresponding editor: Sorab Dalal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Wang, X., Hu, B. et al. Ursolic acid stimulates UCP2 expression and protects H9c2 cells from hypoxia-reoxygenation injury via p38 signaling. J Biosci 43, 857–865 (2018). https://doi.org/10.1007/s12038-018-9801-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-018-9801-2

Keywords

Navigation