Advertisement

Journal of Biosciences

, Volume 43, Issue 2, pp 351–364 | Cite as

Deletion of Dictyostelium discoideum Sir2A impairs cell proliferation and inhibits autophagy

  • Rakhee Lohia
  • Punita Jain
  • Mukul Jain
  • Himanshu Mishra
  • Pradeep Kumar Burma
  • Anju Shrivastava
  • Shweta Saran
Article

Abstract

Sirtuins are a family of deacetylases (Class III histone deacetylases) with evolutionarily conserved functions in cellular metabolism and chromatin regulation. Out of the seven human Sirtuins, the function of Sirt2 is the least understood. The purpose of the present study was to investigate the role of Sir2A, a homolog of human Sirt2 in Dictyostelium discoideum (Dd), a lower eukaryote. We created both overexpressing and deletion strains of Ddsir2A to analyse its functions. We observed sir2A mRNA expression throughout development and the transcript was present in the prespore/spore region of multicellular structures developed. They show a preference towards prestalk/stalk pathway when co-developed with wild-type cells during chimera formation. Deletion strain showed a multi-tipped phenotype, decrease in cell proliferation and inhibition of autophagy. In conclusion, our results show low cAMP levels, reduced cell-adhesion, weak cell migration and impaired autophagy to be responsible for the phenotype shown by the null cells. This study provides new insights into the functions of Ddsir2A.

Keywords

Autophagy development Dictyostelium patterning sir2A 

Notes

Acknowledgements

SS thanks DST (SR/SO/BB-18/2008) and ICMR (54/41/CFP/GER/2011-NCD-II) for research grants. Partial research grants from DST-PURSE, UGC networking, UPE-II and DST-FISTII are also acknowledged. RL, PJ, HM and MJ thank CSIR, DST-INSPIRE, CSIR and DBT for fellowships, respectively.

Supplementary material

12038_2018_9753_MOESM1_ESM.pdf (2.2 mb)
Supplementary material 1 (PDF 2247 kb)

References

  1. Bae NS, Swanson MJ, Vassilev A and Howard BH 2004 Human histone deacetylase SIRT2 interacts with the homeobox transcription factor HOXA10. J. Biochem. 135 695–700CrossRefPubMedGoogle Scholar
  2. Bannister AJ and Kouzarides T 2011 Regulation of chromatin by histone modifications. Cell Res. 21 381–395CrossRefPubMedPubMedCentralGoogle Scholar
  3. Borra MT, O’Neill FJ, Jackson MD, Marshall B, Verdin E, Foltz KR and Denu JM 2002 Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases. J. Biol. Chem. 277 12632–12641CrossRefPubMedGoogle Scholar
  4. Bosch-Presegué L and Vaquero A 2011 The Dual Role of Sirtuins in Cancer. Genes Cancer 2 648–662CrossRefPubMedPubMedCentralGoogle Scholar
  5. Calvo-Garrido J, Carilla-Latorre S, Kubohara Y, Santos-Rodrigo N, Mesquita A, Soldati T, Golstein P and Escalante R 2010 Autophagy in Dictyostelium: genes and pathways, cell death and infection. Autophagy 6 686-701CrossRefPubMedGoogle Scholar
  6. Chalkiadaki A and Guarente L 2012 Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat. Rev. Endocrinol. 8 287–296CrossRefPubMedGoogle Scholar
  7. Dryden SC, Nahhas FA, Nowak JE, Goustin AS and Tainsky MA 2003 Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol. Cell. Biol. 23 3173–3185CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fyre RA 2000 Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 273 793-798CrossRefGoogle Scholar
  9. Gamsjaeger R, Liew CK, Loughlin FE, Crossley M and Mackay JP 2007 Sticky fingers: zinc-fingers as protein-recognition motifs. Trends Biochem. Sci. 32 63–70CrossRefPubMedGoogle Scholar
  10. Gosain A, Lohia R, Shrivastava A and Saran S 2012 Identification and characterization of peptide: N- glycanase from Dictyostelium discoideum. BMC Biochem. 13 9CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hall TMT 2005 Multiple modes of RNA recognition by zinc finger proteins. Curr. Opin. Struct. Biol. 15 367–373CrossRefPubMedGoogle Scholar
  12. Hiratsuka M, Inoue T, Toda T, Kimura N, Shirayoshi Y, Kamitani H, Watanabe T, Ohama E, Tahimic CGT, Kurimasa A and Oshimura M 2003 Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochem. Biophys. Res. Commun. 309 558–566CrossRefPubMedGoogle Scholar
  13. Katayama T and Yasukawa H 2008 Developmental and spatial expression of sir2 gene in the cellular slime mold Dictyostelium discoideum. Microbes Environ. 23 40–43CrossRefPubMedGoogle Scholar
  14. Klug A 1999 Zinc finger peptides for the regulation of gene expression. J. Mol. Biol. 293 215–218CrossRefPubMedGoogle Scholar
  15. Li X and Kazgan N 2011 Mammalian Sirtuins and Energy Metabolism. Int. J. Biol. Sci. 7 575–587CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lohia R, Jain P, Jain M, Burma PK, Shrivastava A and Saran S 2017 Dictyostelium discoideum Sir2D modulates cell-type specific gene expression and is involved in autophagy. Int. J. Dev. Biol. 61 95-104CrossRefPubMedGoogle Scholar
  17. Ma L, Maruwge W, Strambi A, D’Arcy P, Pellegrini P, Kis L, de Milito A, Lain S and Brodin B 2014 SIRT1 and SIRT2 inhibition impairs pediatric soft tissue sarcoma growth. Cell Death Dis. 5 e1483CrossRefPubMedPubMedCentralGoogle Scholar
  18. Martínez-Redondo P and Vaquero A 2013 The diversity of histone versus nonhistone sirtuin substrates. Genes Cancer 4 148–163CrossRefPubMedPubMedCentralGoogle Scholar
  19. Maurya R, Kumar R and Saran S 2017 Dictyostelium AMPK regulates aggregate-size and cell-type patterning. Open Biol. 7 170055CrossRefPubMedPubMedCentralGoogle Scholar
  20. Mishra H, Bhadoriya P and Saran S 2017 Disruption of homeobox containing gene, hbx9 results in the deregulation of prestalk cell patterning in Dictyostelium discoideum. Differentiation 94 27–36CrossRefPubMedGoogle Scholar
  21. Mizushima N and Levine B 2010 Autophagy in mammalian development and differentiation. Nat. Cell Biol. 12 823–830CrossRefPubMedPubMedCentralGoogle Scholar
  22. North BJ and Verdin E 2004 Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol. 5 224CrossRefPubMedPubMedCentralGoogle Scholar
  23. North BJ and Verdin E 2007 Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. PLoS One 2 e784CrossRefPubMedPubMedCentralGoogle Scholar
  24. North BJ, Marshall BL, Borra MT, Denu JM and Verdin E 2003 The human Sir2 ortholog, SIRT2, is an NAD+ dependent tubulin deacetylase. Mol. Cell. 11 437–444CrossRefPubMedGoogle Scholar
  25. Otto GP, Wu MY, Kazgan N, Anderson OR and Kessin RH 2004 Dictyostelium macroautophagy mutants vary in the severity of their developmental defects. J. Biol. Chem. 279 15621–15629CrossRefPubMedGoogle Scholar
  26. Perrod S, Cockell MM, Laroche T, Renauld H, Ducrest A L, Bonnard C and Gasser SM 2001 A cytosolic NAD-dependent deacetylase, Hst2p, can modulate nucleolar and telomeric silencing in yeast. EMBO J. 20 197–209CrossRefPubMedPubMedCentralGoogle Scholar
  27. Sack MN and Finkel T 2012 Mitochondrial metabolism, sirtuins, and aging. Cold Spring Harb. Perspect. Biol. 4 a013102CrossRefPubMedPubMedCentralGoogle Scholar
  28. Schaap P 2011 Evolution of developmental cyclic AMP signalling in the Dictyostelia from an amoebozoan stress response. Dev. Growth Differ. 53 452–462CrossRefPubMedPubMedCentralGoogle Scholar
  29. Serrano L, Martínez-Redondo P, Marazuela-Duque A, Vazquez BN, Dooley SJ, Voigt P, Beck DB, Kane-Goldsmith N, Tong Q, Rabanal RM, Fondevila D, Muñoz P, Krüger M, Tischfield JA and Vaquero A 2013 The tumor suppressor Sirt2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes Dev. 27 639–653CrossRefPubMedPubMedCentralGoogle Scholar
  30. Swer PB, Lohia R, Saran S 2014 Analysis of rapamycin induced autophagy in Dictyostelium discoideum Indian J Exp Biol 52:295-304PubMedGoogle Scholar
  31. Vaquero A, Scher MB, Lee DH, Sutton A, Cheng HL, Alt FW, Serrano L, Sternglanz R and Reinberg D 2006 Sirt2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev. 20 1256–1261CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Department of GeneticsUniversity of DelhiNew DelhiIndia
  3. 3.Department of ZoologyUniversity of DelhiNew DelhiIndia

Personalised recommendations