Journal of Biosciences

, Volume 43, Issue 1, pp 173–187 | Cite as

Plant reference genes for development and stress response studies

  • Joyous T Joseph
  • Najya Jabeen Poolakkalody
  • Jasmine M Shah


Many reference genes are used by different laboratories for gene expression analyses to indicate the relative amount of input RNA/DNA in the experiment. These reference genes are supposed to show least variation among the treatments and with the control sets in a given experiment. However, expression of reference genes varies significantly from one set of experiment to the other. Thus, selection of reference genes depends on the experimental conditions. Sometimes the average expression of two or three reference genes is taken as standard. This review consolidated the details of about 120 genes attempted for normalization during comparative expression analysis in 16 different plants. Plant species included in this review are Arabidopsis thaliana, cotton (Gossypium hirsutum), tobacco (Nicotiana benthamiana and N. tabacum), soybean (Glycine max), rice (Oryza sativa), blueberry (Vaccinium corymbosum), tomato (Solanum lycopersicum), wheat (Triticum aestivum), potato (Solanum tuberosum), sugar cane (Saccharum sp.), carrot (Daucus carota), coffee (Coffea arabica), cucumber (Cucumis sativus), kiwi (Actinidia deliciosa) and grape (Vitis vinifera). The list includes model and cultivated crop plants from both monocot and dicot classes. We have categorized plant-wise the reference genes that have been used for expression analyses in any or all of the four different conditions such as biotic stress, abiotic stress, developmental stages and various organs and tissues, reported till date. This review serves as a guide during the reference gene hunt for gene expression analysis studies.


Biotic and abiotic stress normalization plant real-time PCR reference genes stable expression 


Supplementary material

12038_2017_9728_MOESM1_ESM.docx (53 kb)
Supplementary material 1 (DOCX 53 kb)


  1. Archana K, Rama N, Mamrutha HM and Nataraja KN 2009 Down-regulation of an abiotic stress related Nicotiana benthamiana WRKY transcription factor induces physiological abnormalities. Ind. J. Biotechnol. 8 53–60Google Scholar
  2. Atkinson NJ, Lilley CJ and Urwin PE 2013 Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stress. Plant Physiol. 162 2028–2041CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barsalobres-Cavallari CF, Severino FE, Maluf MP and Maia IG 2009 Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Mol. Biol. 10 1CrossRefPubMedPubMedCentralGoogle Scholar
  4. Belhaj K, Cano LM, Prince DC, Kemen A, Yoshida K, Dagdas YF, Etherington GJ, Schoonbeek H, van Esse HP, Jones JDG, Kamoun S and Schornack S 2017 Arabidopsis late blight: Infection of a nonhost plant by Albugo laibachii enables full colonization by Phytophthora infestans. Cell. Microbiol. 19 e12628CrossRefGoogle Scholar
  5. Blancheteau CI, Aquea F, Reyes-Díaz M, Alberdi M and Arce-Johnson P 2011 Identification of Aluminium-regulated genes by cDNA-AFLP analysis of roots in two contrasting genotypes of highbush blueberry (Vaccinium corymbosum L.). Mol. Biotechnol. 49 32–41CrossRefGoogle Scholar
  6. Boedo C, Le Clerc V, Briard M, Simoneau P, Chevalier M, Georgeault S and Poupard P 2008 Impact of carrot resistance on development of the Alternaria leaf blight pathogen (Alternaria dauci). Eur. J. Plant Pathol. 121 55–66CrossRefGoogle Scholar
  7. Bustin SA 2002 Quantification of mRNA using real-time RT-PCR. Trends and problems. J. Mol. Endocrinol. 29 23–39CrossRefPubMedGoogle Scholar
  8. Catinot J, Buchala A, Abou-mansour E and Me J 2008 Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Lett. 582 473–478CrossRefPubMedGoogle Scholar
  9. Chapman JR and Waldenström J 2015 With reference to reference genes: a systematic review of endogenous controls in gene expression studies. PLoS One 10 e0141853Google Scholar
  10. Charfeddine M, Bouaziz D, Charfeddine S, Hammami A, Ellouz ON and Bouzid R 2016 Overexpression of dehydration-responsive element binding 1 protein (DREB1) in transgenic Solanum tuberosum enhances tolerance to biotic stress. Plant Biotechnol. Rep. 9 79–88Google Scholar
  11. Chen F, Li Q, Sun L and He Z 2006 The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress. DNA Res. 13 53–63CrossRefPubMedGoogle Scholar
  12. Chen W, Shao J, Ye M, Yu K, Bednarek SY, Duan X, and Guo W 2017 Blueberry VcLON 2, a peroxisomal LON protease, is involved in abiotic stress tolerance. Environ. Exp. Bot. 134 1–11CrossRefGoogle Scholar
  13. Cheng L, Huan S, Sheng Y, Hua X, Shu Q, Song S and Jing X 2009 GMCHI, cloned from soybean [Glycine max (L.) Meer.], enhances survival in transgenic Arabidopsis under abiotic stress. Plant Cell Rep. 28 145–153CrossRefPubMedGoogle Scholar
  14. Coker JS and Davies E 2003 Selection of candidate housekeeping controls in tomato plants using EST data. Plant Cell Physiol. 35 336–339Google Scholar
  15. Czechowski T, Stitt M, Altmann T and Udvardi MK 2005 Genome-wide identification and testing of superior reference genes for transcript normalization. Plant Physiol. 139 5–17CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dean JD, Goodwin PH and Hsiang T 2002 Comparison of relative RT-PCR and northern blot analyses to measure expression of β-1,3-glucanase in Nicotiana benthamiana infected with Colltotrichum destructivum. Plant Mol. Bio. Rep. 20 347–356CrossRefGoogle Scholar
  17. Dong W, Ai X, Xu F, Quan T, Liu S and Xia G 2012 Isolation and characterization of a bread wheat salinity responsive ERF transcription factor. Gene 511 38–45CrossRefPubMedGoogle Scholar
  18. Dongdong L, Ming Z, Lili H, Xiaobo C and Yang G 2016 GhMAPKKK49, a novel cotton (Gossypium hirsutum L.) MAPKKK gene, is involved in diverse stress responses. Acta Physiol. Plant. 38 1–12CrossRefGoogle Scholar
  19. Dubey NK, Goel R, Ranjan A, Idris A, Singh SK, Bag SK, Chandrashekar K, Pandey KD, Singh PK and Sawant SV 2013 Comparative transcriptome analysis of Gossypium hirsutum L. in response to sap sucking insects: aphid and whitefly. BMC Genet. 14 1–20CrossRefGoogle Scholar
  20. Dundas J and Ling M 2012 Reference genes for measuring mRNA expression. Theory Biosci. 131 215–223Google Scholar
  21. Egert A, Keller F and Peters S 2013 Abiotic stress-induced accumulation of raffinose in Arabidopsis leaves is mediated by a single raffinose synthase. BMC Plant Biol. 13 218CrossRefPubMedPubMedCentralGoogle Scholar
  22. Evans O, Dou L, Guo Y, Pang C, Wei H, Fan S and Yu S 2016 GhNAC18, a novel cotton (Gossypium hirsutum L.) NAC gene, is involved in leaf senescence and diverse stress responses. Afr. J. Biotechnol. 15 1233–1245CrossRefGoogle Scholar
  23. Expósito-rodríguez M, Borges AA, Borges-Pérez A and Pérez JA 2008 Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol. 12 1–12Google Scholar
  24. Fauteux F, Chain F, Belzile F, Menzies JG and Belanger RR 2006 The protective role of silicon in the Arabidopsis-powdery mildew pathosystem. Proc. Nat. Acad. Sci. 103 17554–17559CrossRefPubMedPubMedCentralGoogle Scholar
  25. Galletti R, Denoux C, Gambetta S, Dewdney J, Ausubel FM, De Lorenzo G and Ferrari S 2008 The AtrbohD-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defense responses effective against Botrytis cinerea. Plant Physiol. 148 1695–1706CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gamm M, Héloir MC, Kelloniemi J, Poinssot B, Wendehenne D and Adrian M 2011 Identification of reference genes suitable for qRT-PCR in grapevine and application for the study of the expression of genes involved in pterostilbene synthesis. Mol. Genet. Genomics 285 273–285CrossRefPubMedGoogle Scholar
  27. Gan D, Zhan M, Yang F, Zhang Q, Hu K, Xu W, Lu Q, Zhang L and Liang D 2017 Expression analysis of argonaute, Dicer-like, and RNA-dependent RNA polymerase genes in cucumber (Cucumis sativus L.) in response to abiotic stress. J. Genet. 96 235–249CrossRefPubMedGoogle Scholar
  28. Giri MK, Singh N, Banday ZZ, Singh V, Ram H, Singh D, Chattopadhyay S and Nandi AK 2017 GBF1 differentially regulates CAT2 and PAD4 transcription to promote pathogen defense in Arabidopsis thaliana. The Plant J. 91 802–815CrossRefPubMedGoogle Scholar
  29. Gong X, Liu M, Zhang L, Ruan Y, Ding R, Ji Y, Zhang N, Zhang S, Farmer J and Wang C 2015 Arabidopsis AtSUC2 and AtSUC4, encoding sucrose transporters, are required for abiotic stress tolerance in an ABA-dependent pathway. Physiol. Plant. 153 119–136CrossRefPubMedGoogle Scholar
  30. González-Agüero M, García-Rojas M, Di Genova A, Correa J, Maass A, Orellana A and Hinrichsen P 2013 Identification of two putative reference genes from grapevine suitable for gene expression analysis in berry and related tissues derived from RNA-Seq data, BMC Genomics 14 878CrossRefPubMedPubMedCentralGoogle Scholar
  31. Goyal E, Amit SK, Singh RS, Mahato AK and Chand S 2016 Transcriptome profiling of the salt- stress response in Triticum aestivum cv. Kharchia Local. Sci. Rep. 13 27752CrossRefGoogle Scholar
  32. Guénin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C and Gutierrez L 2009 Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J. Exp. Bot. 60 487–493CrossRefPubMedGoogle Scholar
  33. Guo J, Ling H, Wu Q, Xu L and Que Y 2014 The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci. Rep. 4 7042CrossRefPubMedPubMedCentralGoogle Scholar
  34. Guo Y, Li R, Asgher Z, Shamsi IH, Yu S, Zhao J and Ren X 2016 Genome-wide selection and testing of superior reference genes for quantitative gene expression normalization in tobacco. J. Biotechnol. Microbiol. 5 68–75Google Scholar
  35. Gutierrez L, Mauriat M, Guénin S, Pelloux J, Lefebvre JF, Louvet R, Rusterucci C, Moritz T, Guerineau F, Bellini C and Van Wuytswinkel O 2008 The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol. J. 6 609–618CrossRefPubMedGoogle Scholar
  36. Han Y, Li A, Li F, Zhao M and Wang W 2012 Characterization of a wheat (Triticum aestivum L.) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation. Plant Physiol. Biochem. 54 49–58CrossRefPubMedGoogle Scholar
  37. Hashimoto M, Kisseleva L, Sawa S, Furukawa T, Komatsu S and Koshiba T 2004 A Novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stresses, possibly via the jasmonic acid signaling pathway. Plant Cell Physiol. 45 550–559CrossRefPubMedGoogle Scholar
  38. Huang X, Chen J, Xiao H, Xiao Y, Wu J and Wu J 2015 Dynamic transcriptome analysis and volatile profiling of Gossypium hirsutum in response to the cotton bollworm Helicoverpa armigera. Sci. Rep. 1–14Google Scholar
  39. Huggett J, Dheda K, Bustin S and Zumla A 2005 Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 6 279–284Google Scholar
  40. Iskandar HM, Simpson RS, Casu RE, Bonnett GD, Maclean DJ and Manners JM 2004 Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Mol. Biol. Rep. 22 325–337CrossRefGoogle Scholar
  41. Jain M, Nijhawan A, Tyagi AK and Khurana JP 2006 Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 345 646–651CrossRefPubMedGoogle Scholar
  42. Jian B, Liu B, Bi Y, Hou W, Wu C and Han T 2008 Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol. Biol. 14 1–14Google Scholar
  43. Kim S, Veena G and Gelvin SB 2007 Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J. 51 779–791CrossRefPubMedGoogle Scholar
  44. Kozera B and Rapacz M 2013 Reference genes in real-time PCR. J. Appl. Genet. 54 391–406CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lacroix B and Citovsky V 2014 A mutation in negative regulator of basal resistance WRKY17 of Arabidopsis increases susceptibility to Agrobacterium-mediated transient genetic transformation. F1000Research 1–8Google Scholar
  46. Lanubile A, Muppirala UK, Severin AJ, Marocco A and Munkvold GP 2015 Transcriptome profiling of soybean (Glycine max) roots challenged with pathogenic and non-pathogenic isolates of Fusarium oxysporum. BMC Genomics 16 1–14CrossRefGoogle Scholar
  47. Le DT, Aldrich DL, Valliyodan B, Watanabe Y and Van Ha C 2012 Evaluation of candidate reference genes for normalization of quantitative RT-PCR in Soybean tissues under various abiotic stress conditions. PLoS ONE 7 e46487CrossRefPubMedPubMedCentralGoogle Scholar
  48. Leng L, Liang Q, Jiang J, Zhang C, Hao Y, Wang X and Su W 2017 A subclass of HSP70s regulate development and abiotic stress responses in Arabidopsis thaliana. J. Plant Res. 130 349–363CrossRefPubMedGoogle Scholar
  49. Li J, Liang D, Li M and Ma F 2013a Light and abiotic stresses regulate the expression of GDP-l-galactose phosphorylase and levels of ascorbic acid in two kiwifruit genotypes via light-responsive and stress-inducible cis-elements in their promoters. Planta 238 535–547CrossRefPubMedGoogle Scholar
  50. Li P, Chen L, Zhou Y, Xia X, Shi K, Chen Z and Yu J 2013b Brassinosteroids-induced systemic stress tolerance was associated with increased transcripts of several defence-related genes in the phloem in Cucumis sativus. PLoS ONE 8 1–8Google Scholar
  51. Li L, Zhang H, Liu Z, Cui X, Zhang T, Li Y and Zhang L 2016 Comparative transcriptome sequencing and de novo analysis of Vaccinium corymbosum during fruit and color development. BMC Plant Biol. 223 1–9Google Scholar
  52. Liang C, Meng Z, Meng Z, Malik W, Yan R, Lwin KM, Lin F, Wang Y, Sun G, Zhou T, Zhu T, Li J, Jin S, Guo S and Zhang R 2016 GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Sci. Rep. 6 35040CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lin M, Pang C, Fan S, Song M, Wei H and Yu S 2015 Global analysis of the Gossypium hirsutum L. transcriptome during leaf senescence by RNA-Seq. BMC Plant Biol. 15 1–18CrossRefGoogle Scholar
  54. Ling H, Wu Q, Guo J, Xu L and Que Y 2014 Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative RT-PCR. PLoS ONE 9 e97469CrossRefPubMedPubMedCentralGoogle Scholar
  55. Liu D, Shi L, Han C, Yu J, Li D and Zhang Y 2012 Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real time PCR. PLoS ONE 7 e46451CrossRefPubMedPubMedCentralGoogle Scholar
  56. Liu Y, Ji X, Nei X, Qu M, Zheng L, Tan Z, Zhao H, Huo L, Liu S, Zhang B and Wang Y 2015 Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. New Phytol. 207 692–709CrossRefPubMedGoogle Scholar
  57. Løvdal T, and Lillo C 2009 Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Anal. Biochem. 387 238–242CrossRefPubMedGoogle Scholar
  58. Ma Y, Wang J, Zhong Y, Geng F, Cramer GR and Cheng ZM 2015 Subfunctionalization of cation/proton antiporter 1 genes in grapevine in response to salt stress in different organs. Hortic. Res. 2 15031CrossRefPubMedPubMedCentralGoogle Scholar
  59. Mascia T, Santovito E, Gallitelli D and Cillo F 2010 Evaluation of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in infected tomato plants. Mol. Plant Pathol. 11 805–816CrossRefPubMedGoogle Scholar
  60. Meng C, Cai C, Zhang T and Guo W 2009 Characterization of six novel NAC genes and their responses to abiotic stresses in Gossypium hirsutum L. Plant. Sci. 176 352–359CrossRefGoogle Scholar
  61. Moreira RS, Gertrudes E, Lemos DM and Abdelnoor RV 2011 Identification of reference genes for expression analysis by real-time quantitative PCR in drought-stressed soybean. Presc. Agropec. Bras. 46 58–65CrossRefGoogle Scholar
  62. Msanne J, Lin J and Stone JM 2011 Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta 234 97–107CrossRefPubMedGoogle Scholar
  63. Naik D, Dhanaraj AL, Arora R, and Rowland LJ 2007 Identification of genes associated with cold acclimation in blueberry (Vaccinium corymbosum L.) using a subtractive hybridization approach. Plant Sci. 173 213–222CrossRefGoogle Scholar
  64. Nicot N, Hoffmann L and Lippmann CDRP 2005 Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J. Exp. Bot. 56 2907–2914CrossRefPubMedGoogle Scholar
  65. Pandey R, Joshi G, Bhardwaj AR, Agarwal M and Katiyar-Agarwal S 2014 A Comprehensive genome-wide study on tissue- specific and abiotic stress-specific miRNAs in Triticum aestivum. PLoS ONE 9 e95800CrossRefPubMedPubMedCentralGoogle Scholar
  66. Paolacci AR, Tanzarella OA, Porceddu E and Ciaffi M 2009 RT-PCR normalization in wheat. BMC Mol. Biol. 27 1–27Google Scholar
  67. Pecinka A, Rosa M, Schikora A, Berlinger M, Hirt H, Luschnig C and Scheid OM 2009 Transgenerational stress memory is not a general response in Arabidopsis. PLoS ONE 4 e5202CrossRefPubMedPubMedCentralGoogle Scholar
  68. Perrin F, Laurent CD, Gibon Y, Citerne S, Huet S, Suel A, Clerc VL, Briard M, Hamama L, Peltier D, Gagné S and Geoffriau E 2017 Combined Alternaria dauci infection and water stresses impact carotenoid content of carrot leaves and roots. Environ. Exp. Bot. 143 125–134Google Scholar
  69. Petriccione M, Mastrobuoni F, Zampella L and Scortichini M 2015 Reference gene selection for normalization of RT-qPCR gene expression data from Actinidia deliciosa leaves infected with Pseudomonas syringae pv. Sci. Rep. 5 16961Google Scholar
  70. Pfaffl MW 2004 Quantification strategies in real-time PCR; in A-Z of Quantitative PCR (eds) SA Bustin (International University Line: La Jolla, CA, USA) pp 87–112Google Scholar
  71. Pilati S, Perazzolli M, Malossini A, Cestaro A, Demattè L, Fontana P, Dal Ri A, Viola R, Velasco R and Moser C 2007 Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison. BMC Genomics 8 428CrossRefPubMedPubMedCentralGoogle Scholar
  72. Qin D, Wu H, Peng H, Yao Y, Ni Z, Li Z, Zhou C and Sun Q 2008 Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using wheat genome array. BMC Genomics 19 1–19Google Scholar
  73. Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J and Cuypers A 2008 Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227 1343–1349CrossRefPubMedGoogle Scholar
  74. Rocha AJ, Monteiro-Júnior JE, Freire JEC, Sousa AJS and Fonteles CSR 2015 Real Time PCR: the use of reference genes and essential rules required to obtain normalisation data reliable to quantitative gene expression. J. Mol. Bio. Res. 5 45–55Google Scholar
  75. Rodrigues F, Marcelino-guimaraes FC, Lima A, Vilela R and Margis R 2010 The use of microRNAs as reference genes for quantitative polymerase chain reaction in soybean. Anal. Biochem. 406 185–192CrossRefGoogle Scholar
  76. Schmidt GW and Delaney SK 2010 Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol. Genet. Genomics 283 233–241CrossRefPubMedGoogle Scholar
  77. Shah JM, Raghupathy V and Veluthambi K 2009 Enhanced sheath blight resistance in transgenic rice expressing an endochitinase gene from Trichoderma virens. Biotechnol. Lett. 2 239–244CrossRefGoogle Scholar
  78. Szalonek M, Sierpien B, Rymaszewski W and Gieczewska K 2015 Potato Annexin STANN1 promotes drought tolerance and mitigates light stress in transgenic Solanum tuberosum L. plants. PLoS ONE 10 e0132683 Google Scholar
  79. Tayeh C, Randoux B, Vincent D, Bourdon N and Reignault P 2014 Exogenous trehalose induces defenses in wheat before and during a biotic stress caused by powdery mildew. Phytopathology 104 293–305CrossRefPubMedGoogle Scholar
  80. Terry BC, Liu X, Murphy AM and Pajerowska-Mukhtar KM 2015 Arabidopsis thaliana GCN2 is involved in responses to osmotic and heat stresses. Int. J. Plant Res. 5 87–95Google Scholar
  81. Tian C, Jiang Q, Wang F, Wang GL, Xu ZS and Xiong AS 2015 Selection of suitable reference genes for qPCR normalization under abiotic stresses and hormone stimuli in carrot leaves. PLoS ONE 10 e0117569CrossRefPubMedPubMedCentralGoogle Scholar
  82. Tremblay A, Hosseini P, Alkharouf NW, Li S and Matthews BF 2011 Gene expression in leaves of susceptible Glycine max during infection with Phakopsora pachyrhizi using next generation sequencing. Sequencing 827250 1–4CrossRefGoogle Scholar
  83. Trivedi DK, Ansari MW and Tuteja N 2013 Multiple abiotic stress responsive rice cyclophilin (OsCYP-25) mediates a wide range of cellular responses. Commun. Integr. Biol. 6 1–8CrossRefGoogle Scholar
  84. Ueno Y, Yoshida R, Kishi-kaboshi M and Matsushita A 2015 Abiotic stresses antagonize the rice defence pathway through the tyrosine-dephosphorylation of OsMPK6. PLoS Pathog. 11 e1005231CrossRefPubMedPubMedCentralGoogle Scholar
  85. Vaghchhipawala ZE, Vasudevan B, Lee S, Morsy MR and Mysore KS 2012 Agrobacterium may delay plant nonhomologous end-joining DNA repair via XRCC4 to favor T-DNA integration. The Plant Cell 24 4110–4123CrossRefPubMedPubMedCentralGoogle Scholar
  86. Vashisth T and Klima L 2011 An efficient RNA isolation procedure and identification of reference genes for normalization of gene expression in blueberry. Plant Cell Rep. 30 2167–2176CrossRefPubMedGoogle Scholar
  87. Wang J, Pan C, Wang Y, Ye L, Wu J, Chen L, Zou T and Lu G 2015 Genome-wide identification of MAPK, MAPKK, and MAPKKK gene families and transcriptional profiling analysis during development and stress response in cucumber. BMC Genet. 16 386Google Scholar
  88. Wang M, Wang Q and Zhang B 2013 Evaluation and selection of reliable reference genes for gene expression under abiotic stress in cotton (Gossypium hirsutum L.). Gene 530 44–50CrossRefPubMedGoogle Scholar
  89. Wang W, Wang HL, Wan SB, Zhang JH, Zhang P, Zhan JC and Huang WD 2012 Chalcone isomerase in grape vine: gene expression and localization in the developing fruit. Biol. Plant. 56 545–550CrossRefGoogle Scholar
  90. Warzybok A and Migocka M 2013 Reliable reference genes for normalization of gene expression in cucumber grown under different nitrogen nutrition. PLoS ONE 8 e72887CrossRefPubMedPubMedCentralGoogle Scholar
  91. Woo-Lee C, Efetova M, Engelmann JC, Cramell R, Wasternack C, Ludwig-Muller J, Hedrich R and Deeken R 2009 Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. The Plant Cell 21 2948–2962CrossRefGoogle Scholar
  92. Wu H, Liu K, Wang Y, Wu J, Chiu W and Chen C 2014a AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods 10 1–16CrossRefGoogle Scholar
  93. Wu T, Wang R, Xu X, He X, Sun B and Zhong Y 2014b Cucumis sativus L-type lectin receptor kinase (CsLecRK) gene family response to Phytophthora melonis, Phytophthora capsici and water immersion in disease resistant and susceptible cucumber cultivars. Gene 549 214–222CrossRefPubMedGoogle Scholar
  94. Xin X, Nomura K, Underwood W and He SY 2013 Induction and suppression of PEN3 focal accumulation during Pseudomonas syringae pv. tomato DC3000 infection of Arabidopsis. Mol. Plant-Microbe Interact. 26 861–867CrossRefPubMedGoogle Scholar
  95. Yan A, Wu M, Yan L, Hu R, Ali I and Gan Y 2014 AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis. PLoS ONE 9 e85208CrossRefPubMedPubMedCentralGoogle Scholar
  96. Yang X, Jiang W and Yu H 2012 The expression profiling of the lipoxygenase (LOX) family genes during fruit development, abiotic stress and hormonal treatments in cucumber (Cucumis sativus L.). Int. J. Mol. Sci. 13 2481–2500CrossRefPubMedPubMedCentralGoogle Scholar
  97. Yin X, Allan AC, Xu Q, Burdon J, Dejnoprat S, Chen K and Ferguson IB 2012 Postharvest biology and technology differential expression of kiwifruit ERF genes in response to postharvest abiotic stress. Postharvest Biol. Technol. 66 1–7CrossRefGoogle Scholar
  98. Yoshimoto N, Takahashi H, Smith FW, Yamaya T and Saito K 2002 Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J. 29 465–473CrossRefPubMedGoogle Scholar
  99. Zhang C, Liu H, Jia C and Liu Y 2016 Cloning, characterization and functional analysis of a flavonol synthase from Vaccinium corymbosum. Trees 30 1595–1605CrossRefGoogle Scholar
  100. Zhou X and Wu F 2009 Physiological and molecular plant pathology differentially expressed transcripts from cucumber (Cucumis sativus L.) root upon inoculation with Fusarium oxysporum f. sp. cucumerinum Owen. Physiol. Mol. Plant Pathol. 74 142–150CrossRefGoogle Scholar
  101. Zhu X, Qi L, Liu X, Cai S, Xu H, Huang R, Li J, Wei X and Zhang Z 2014 The wheat ethylene response factor transcription factor pathogen-induced ERF1 mediates host responses to both the necrotrophic pathogen. Plant Physiol. 164 1499–1514CrossRefPubMedPubMedCentralGoogle Scholar
  102. Zhu Y, Shi D, Ruan M, Zhang L, Meng Z, Liu J and Yang W 2013 Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (Gossypium hirsutum L.). PLoS ONE 8 e80218CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Joyous T Joseph
    • 1
  • Najya Jabeen Poolakkalody
    • 1
  • Jasmine M Shah
    • 1
  1. 1.Department of Plant ScienceCentral University of KeralaPadannakkad, KasaragodIndia

Personalised recommendations