Dust color temperature distribution of two FIR cavities at IRIS and AKARI maps

  • A. K. Jha
  • B. Aryal


By systematically searching the region of far infrared loops, we found a number of huge cavity-like dust structures at \(60\,\mu \hbox {m}\) and \(100\,\mu \hbox {m}\) IRIS maps. By checking these with AKARI maps (\(90\,\mu \hbox {m}\) and \(140\,\mu \hbox {m}\)), two new cavity-like structures (sizes \(\sim \) \( 2.7\,\hbox {pc} \times 0.8\,\hbox {pc}\) and \(\sim \) \( 1.8\,\hbox {pc} \times 1\,\hbox {pc}\)) located at R.A. (\(\hbox {J}2000)=14^{h}41^{m}23^{s}\) and Dec. \((\hbox {J}2000)=-64^{\circ }04^{\prime }17^{{\prime }{\prime }}\) and R.A. \((\hbox {J}2000)=05^{h}05^{m}35^{s}\) and Dec. \((\hbox {J}2000)=-\,69^{\circ }35^{\prime } 25^{{\prime }{\prime }}\) were selected for the study. The difference in the average dust color temperatures calculated using IRIS and AKARI maps of the cavity candidates were found to be \(3.2\pm 0.9\,\hbox {K}\) and \(4.1\pm 1.2\,\hbox {K}\), respectively. Interestingly, the longer wavelength AKARI map gives larger values of dust color temperature than that of the shorter wavelength IRIS maps. Possible explanation of the results will be presented.


ISM dust cavity IRIS AKARI 



We are indebted to the referee for his/her constructive criticism and useful comments. We acknowledge SIMBAD database, Sky View Virtual Observatory and NASA/IPAC Infrared Science Archive. One of the authors (AKJ) acknowledges Central Department of Physics, Tribhuvan University, Nepal for all kinds of support for his research work.


  1. Aryal B., Weinberger R. 2006, A&A, 44, 1, 213ADSCrossRefGoogle Scholar
  2. Aryal B., Rajbahak C., Weinberger R. 2009, Ap&SS, 323, 323ADSCrossRefGoogle Scholar
  3. Aryal B., Rajbahak C., Weinberger R. 2010, MNRAS, 402, 1307ADSCrossRefGoogle Scholar
  4. Brand P. W. J. L., Zealey W. J. 1975, A&A, 38, 363ADSGoogle Scholar
  5. Dupac X., Bernard J.-P., Boudet N., Giard M., Lamarre J.-M. et al. 2003, A&A, 404, L11ADSCrossRefGoogle Scholar
  6. Kiss Cs., Mor A., Tth L. V. 2004, A&A, 418, 131ADSCrossRefGoogle Scholar
  7. Koenyves V., Kiss Cs., Mor A., Kiss Z. T., Tth L. V. 2007, A&A, 463, 3, 1227ADSCrossRefGoogle Scholar
  8. Lasker B. M., Sturch C. R., McLean B. J., Russell J. L., Jenkner H., Shara M. M. 1990, AJ, 99, 2019ADSCrossRefGoogle Scholar
  9. Jha A. K., Aryal B., Weinberger R. 2017, RMxAA, 53, 467ADSGoogle Scholar
  10. Miville-Deschnes M. A., Lagache G. 2005, Astrophys. J. Suppl. Ser., 157, 2, 302ADSCrossRefGoogle Scholar
  11. Murakami H., Baba S., Barthel P., Clements D. L., Cohen M., Doi Y., Enya K. et al. 2007, Publ. Astron. Soc. Japan 59, S369CrossRefGoogle Scholar
  12. Odenwald S. F. 1988, ApJ, 325, 320ADSCrossRefGoogle Scholar
  13. Odenwald S. F., Rickard L.J. 1987, ApJ, 318, 702ADSCrossRefGoogle Scholar
  14. Schnee S. L., Ridge N. A., Goodman A. A., Jason G. L. 2005, ApJ, 634, 442ADSCrossRefGoogle Scholar
  15. Takita S., Doi Y., Ootsubo T., Arimatsu K., Ikeda N., Kawada M., Kitamura Y. et al. 2015, PASJ, 67, 3, 51ADSCrossRefGoogle Scholar
  16. Weaver R., McCray R., Castor J., Shapiro P., Moore R. 1977, ApJ, 218, 377ADSCrossRefGoogle Scholar
  17. Weinberger R., Armsdorfer B. 2004, A&A, 416, L27ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Central Department of PhysicsTribhuvan UniversityKirtipurNepal

Personalised recommendations