Role of primordial black holes in the direct collapse scenario of supermassive black hole formation at high redshifts

Article
  • 8 Downloads

Abstract

In this paper, we explore the possibility of accreting primordial black holes as the source of heating for the collapsing gas in the context of the direct collapse black hole scenario for the formation of super-massive black holes (SMBHs) at high redshifts, \(z\sim \) 6–7. One of the essential requirements for the direct collapse model to work is to maintain the temperature of the in-falling gas at \(\approx \)10\(^4\) K. We show that even under the existing abundance limits, the primordial black holes of masses \(\gtrsim \)10\(^{-2}M_\odot \), can heat the collapsing gas to an extent that the \(\mathrm{H}_2\) formation is inhibited. The collapsing gas can maintain its temperature at \(10^4\) K till the gas reaches a critical density \(n_{{c}} \,{\approx }\, 10^3~\hbox {cm}^{-3}\), at which the roto-vibrational states of \(\mathrm{H}_2\) approaches local thermodynamic equilibrium and \(\mathrm{H}_2\) cooling becomes inefficient. In the absence of \(\mathrm{H}_2\) cooling, the temperature of the collapsing gas stays at \(\approx \)10\(^4\) K even as it collapses further. We discuss scenarios of subsequent angular momentum removal and the route to find collapse through either a supermassive star or a supermassive disk.

Keywords

Cosmology: theory cosmology: dark ages reionization first stars quasars: supermassive black holes 

Notes

Acknowledgements

The authors would like to thank the referees for useful comments. KLP thanks Shiv Sethi for many useful discussions.

References

  1. Abel T., Bryan G. L., Norman M. L. 2002, Science, 295, 93ADSCrossRefGoogle Scholar
  2. Akerib D. S., Alsum S., Araújo H. M. et al. 2017, Phys. Rev. Lett., 118, 021303ADSCrossRefGoogle Scholar
  3. Ali-Haïmoud Y., Kamionkowski M. 2017, Phys. Rev. D, 95, 043534ADSCrossRefGoogle Scholar
  4. Aprile E., Aalbers J., Agostini F. et al. 2017, Phys. Rev. Lett., 119, 181301ADSCrossRefGoogle Scholar
  5. Begelman M. C., Volonteri M., Rees M. J. 2006, MNRAS, 370, 289ADSCrossRefGoogle Scholar
  6. Bondi H. 1952, MNRAS, 112, 195ADSCrossRefGoogle Scholar
  7. Bovino S., Schleicher D. R. G., Grassi, T. 2014, A&A, 561, A13ADSCrossRefGoogle Scholar
  8. Bromm V., Coppi P. S., Larson R. B. 2002, ApJ, 564, 23ADSCrossRefGoogle Scholar
  9. Bromm V., Loeb A. 2003, ApJ, 596, 34ADSCrossRefGoogle Scholar
  10. Carr B., Raidal M., Tenkanen T., Vaskonen V., Veermäe, H. 2017, Phys. Rev. D, 96, 023514ADSCrossRefGoogle Scholar
  11. Carr B., Kühnel F., Sandstad, M. 2016, Phys. Rev. D, 94, 083504ADSCrossRefGoogle Scholar
  12. Clark S. J., Dutta B., Gao Y., Strigari L. E., Watson S. 2017, Phys. Rev. D, 95, 083006ADSCrossRefGoogle Scholar
  13. Gaggero D., Bertone G., Calore F. et al. 2017, Phys. Rev. Lett., 118, 241101ADSCrossRefGoogle Scholar
  14. Galli D., Palla F. 1998, A&A, 335, 403ADSGoogle Scholar
  15. Haiman Z. 2004, ApJ, 613, 36ADSCrossRefGoogle Scholar
  16. Hawking S. 1971, MNRAS, 152, 75ADSCrossRefGoogle Scholar
  17. Heinz S., Sunyaev R. A. 2003, MNRAS, 343, L59ADSCrossRefGoogle Scholar
  18. Hollenbach D., McKee C. F. 1979, ApJs, 41, 555ADSCrossRefGoogle Scholar
  19. Kühnel F., Freese K. 2017, Phys. Rev. D, 95, 083508ADSCrossRefGoogle Scholar
  20. Madhavacheril M. S., Sehgal N., Slatyer T. R. 2014, Phys. Rev. D, 89, 103508ADSCrossRefGoogle Scholar
  21. Mangalam A. 2001, A&A, 379, 1138ADSCrossRefGoogle Scholar
  22. Mangalam A. 2003, BASI, 31, 207ADSGoogle Scholar
  23. Mortlock D. J., Warren S. J., Venemans B. P. et al. 2011, Nature, 474, 616ADSCrossRefGoogle Scholar
  24. Narayan R., Yi I. 1995, ApJ, 452, 710ADSCrossRefGoogle Scholar
  25. Oh S. P., Haiman Z. 2002, ApJ, 569, 558ADSCrossRefGoogle Scholar
  26. O’Shea B. W., Norman M. L. 2007, ApJ, 654, 66ADSCrossRefGoogle Scholar
  27. Omukai K. 2001, ApJ, 546, 635ADSCrossRefGoogle Scholar
  28. PandaX-II Collaboration: Cui X. et al. 2017, Phys. Rev. Lett., 119, 181302Google Scholar
  29. Park M.-G., Ostriker J. P. 2001, ApJ, 549, 100ADSCrossRefGoogle Scholar
  30. Rice J. R., Zhang B. 2017, J. High Energy Astrophys., 13, 22ADSCrossRefGoogle Scholar
  31. Ricotti M., Ostriker J. P., Mack K. J. 2008, ApJ, 680, 829ADSCrossRefGoogle Scholar
  32. Safranek-Shrader C., Agarwal M., Federrath C. et al. 2012, MNRAS, 426, 1159ADSCrossRefGoogle Scholar
  33. Salpeter E. E. 1964, ApJ, 140, 796ADSCrossRefGoogle Scholar
  34. Sethi S. K., Nath B. B., Subramanian K. 2008, MNRAS, 387, 1589ADSCrossRefGoogle Scholar
  35. Sethi S., Haiman Z., Pandey K. 2010, ApJ, 721, 615ADSCrossRefGoogle Scholar
  36. Shakura N. I., Sunyaev R. A. 1973, A&A, 24, 337ADSGoogle Scholar
  37. Shang C., Bryan G. L., Haiman Z. 2010, MNRAS, 402, 1249ADSCrossRefGoogle Scholar
  38. Smith A., Bromm V., Loeb A. 2016, MNRAS, 460, 3143ADSCrossRefGoogle Scholar
  39. Smole M., Micic M., Martinović, N. 2015, MNRAS, 451, 1964ADSCrossRefGoogle Scholar
  40. Toomre A. 1964, ApJ, 139, 1217ADSCrossRefGoogle Scholar
  41. Tisserand P., Le Guillou L., Afonso C. et al. 2007, A&A, 469, 387ADSCrossRefGoogle Scholar
  42. Trenti M., Stiavelli M. 2009, ApJ, 694, 879ADSCrossRefGoogle Scholar
  43. Volonteri M. 2007, ApJl, 663, L5ADSCrossRefGoogle Scholar
  44. Volonteri M., Bellovary J. 2012, Rep. Prog. Phys., 75, 124901ADSCrossRefGoogle Scholar
  45. Volonteri M., Rees M. J. 2005, ApJ, 633, 624ADSCrossRefGoogle Scholar
  46. Wu X.-B., Wang F., Fan X. et al. 2015, Nature, 518, 512ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Indian Institute of AstrophysicsBangaloreIndia

Personalised recommendations