A comparative study of single-temperature and two-temperature accretion flows around black holes

  • Indu Kalpa Dihingia
  • Santabrata Das
  • Samir Mandal
Review
  • 13 Downloads

Abstract

We study the properties of sub-Keplerian accretion disk around a stationary black hole, considering bremsstrahlung, synchrotron and Comptonization of synchrotron photons as radiative cooling mechanisms active in the disk. We obtain the solutions of two-temperature global accretion flow (TTAF) and compare it with the results obtained from single-temperature (STAF) model. We observe that flow properties, in particular, the radial profile of electron and ion temperatures differ noticeably in the adopted models for flows with identical boundary conditions fixed at the outer edge of the disk. Since the electron temperature is one of the key factors to regulate the radiative processes, we argue that physically motivated description of electron temperature needs to be considered in studying the astrophysical phenomena around black holes.

Keywords

Black holes hydrodynamics shock waves 

References

  1. Belloni T. et al. 2006, MNRAS, 367, 1113ADSCrossRefGoogle Scholar
  2. Chakrabarti S. K. 1989, ApJ, 347, 365ADSCrossRefGoogle Scholar
  3. Chakrabarti S. K., Molteni D. 1995, MNRAS, 272, 80ADSCrossRefGoogle Scholar
  4. Chakrabarti S., Titarchuk L. G. 1995, ApJ, 455, 623ADSCrossRefGoogle Scholar
  5. Chakrabarti S. K. 1996, ApJ, 464, 664ADSCrossRefGoogle Scholar
  6. Chattopadhyay I., Chakrabarti S. K. 2002, MNRAS, 333, 454ADSCrossRefGoogle Scholar
  7. Colpi M., Maraschi L., Treves A. 1984, ApJ, 280, 319ADSCrossRefGoogle Scholar
  8. Das S. 2007, MNRAS, 376, 1659ADSCrossRefGoogle Scholar
  9. Das S., Chakrabarti S. K. 2004, Int. J. Mod. Phys. D, 13, 1955ADSCrossRefGoogle Scholar
  10. Dihingia I., Das S., Mandal S. 2015, in Astronomical Society of India Conference Series, Volume 12Google Scholar
  11. Dihingia I., Das S., Mandal S. 2017, MNRAS, in pressGoogle Scholar
  12. Fukue J. 1987, Publ. Astron. Soc. Japan, 39, 309ADSGoogle Scholar
  13. Gierliński M., Newton J. 2006, MNRAS, 370, 837ADSCrossRefGoogle Scholar
  14. Kusunose M., Takahara F. 1988, Publ. Astron. Soc. Japan, 40, 435ADSGoogle Scholar
  15. Kusunose M., Takahara F. 1989, Publ. Astron. Soc. Japan, 41, 263ADSGoogle Scholar
  16. Luo C., Liang E. P. 1994, MNRAS, 266, 386ADSCrossRefGoogle Scholar
  17. Mandal S., Chakrabarti S. K. 2005, A&A, 434, 839ADSCrossRefGoogle Scholar
  18. Manmoto T., Mineshige S., Kusunose M. 1997, ApJ, 489, 791ADSCrossRefGoogle Scholar
  19. Matsumoto R., Kato S., Fukue J., Okazaki A. T. 1984, Publ. Astron. Soc. Japan, 36, 71ADSGoogle Scholar
  20. Miyakawa T., Yamaoka K., Homan J., Saito K., Dotani T., Yoshida A., Inoue H. 2008, Publ. Astron. Soc. Japan, 60, 637ADSCrossRefGoogle Scholar
  21. Narayan R., Yi I. 1995, ApJ, 452, 710ADSCrossRefGoogle Scholar
  22. Paczynsky B., Wiita P. J. 1980, A&A, 88, 23ADSGoogle Scholar
  23. Piran T. 1978, ApJ, 221, 652ADSCrossRefGoogle Scholar
  24. Pringle J. 1976, MNRAS, 177, 65ADSCrossRefGoogle Scholar
  25. Rajesh S., Mukhopadhyay B. 2010, MNRAS, 402, 961ADSCrossRefGoogle Scholar
  26. Rybicki G. B., Lightman A. P. 1979, Radiative Processes in Astrophysics, Wiley-InterscienceGoogle Scholar
  27. Shapiro S. L., Lightman A. P., Eardley D. M. 1976, ApJ, 204, 187ADSCrossRefGoogle Scholar
  28. Spitzer L. 2013, Physics of fully ionized gases, Courier CorporationGoogle Scholar
  29. Wandel A., Liang E. P. 1991, ApJ, 380, 84ADSCrossRefGoogle Scholar
  30. White T. R., Lightman A. P. 1989, ApJ, 340, 1024ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Indu Kalpa Dihingia
    • 1
  • Santabrata Das
    • 1
  • Samir Mandal
    • 2
  1. 1.Indian Institute of Technology GuwahatiGuwahatiIndia
  2. 2.Indian Institute of Space Science and TechnologyThiruvananthapuramIndia

Personalised recommendations