Standing shocks in magnetized dissipative accretion flow around black holes

Review
  • 20 Downloads

Abstract

We explore the global structure of the accretion flow around a Schwarzschild black hole where the accretion disc is threaded by toroidal magnetic fields. The accretion flow is optically thin and advection dominated. The synchrotron radiation is considered to be the active cooling mechanism in the flow. With this, we obtain the global transonic accretion solutions and show that centrifugal barrier in the rotating magnetized accretion flow causes a discontinuous transition of the flow variables in the form of shock waves. The shock properties and the dynamics of the post-shock corona are affected by the flow parameters such as viscosity, cooling rate and strength of the magnetic fields. The shock properties are investigated against these flow parameters. We further show that for a given set of boundary parameters at the outer edge of the disc, accretion flow around a black hole admits shock when the flow parameters are tuned for a considerable range.

Keywords

Accretion accretion discs black hole physics magneto-hydrodynamics shock waves. 

References

  1. Aktar R., Das S., Nandi A. 2015, MNRAS, 453, 3414ADSCrossRefGoogle Scholar
  2. Aktar R., Das S., Nandi A., Sreehari, H. 2017, MNRAS,  471, 4806ADSCrossRefGoogle Scholar
  3. Balbus S., Hawley J. F. 1991, ApJ, 376, 214ADSCrossRefGoogle Scholar
  4. Balbus S. 2003, ARA&A, 41, 555ADSCrossRefGoogle Scholar
  5. Becker P. A., Kazanas D. 2001, ApJ, 546, 429ADSCrossRefGoogle Scholar
  6. Becker P. A., Subramanian P. 2005, ApJ, 622, 520ADSCrossRefGoogle Scholar
  7. Beckwith K., Hawley J. F., Krolik J. H. 2008, ApJ, 678, 1180ADSCrossRefGoogle Scholar
  8. Blandford R. D., Znajek R. L. 1977, MNRAS, 179, 433ADSCrossRefGoogle Scholar
  9. Chakrabarti S. K. 1989, ApJ, 347, 365ADSCrossRefGoogle Scholar
  10. Chakrabarti S. K. 1990, MNRAS, 243, 610ADSGoogle Scholar
  11. Chakrabarti S. K. 1996, ApJ, 464, 664ADSCrossRefGoogle Scholar
  12. Chakrabarti S. K. 1999, A&A, 351, 185ADSGoogle Scholar
  13. Chakrabarti S. K., Das S. 2004, MNRAS, 349, 649ADSCrossRefGoogle Scholar
  14. Chang K. M., Ostriker J. P. 1985, ApJ, 288, 428ADSCrossRefGoogle Scholar
  15. Chattopadhyay I., Chakrabarti S. K. 2002, MNRAS, 333, 454ADSCrossRefGoogle Scholar
  16. Chattopadhyay I., Chakrabarti S. K. 2011, IJMPD, 20, 1597ADSCrossRefGoogle Scholar
  17. Das, S., Chattopadhyay I., Chakrabarti S. K. 2001a, ApJ, 557, 983ADSCrossRefGoogle Scholar
  18. Das S., Chattopadhyay I., Nandi A., Chakrabarti S. K. 2001b, A&A, 379, 683ADSCrossRefGoogle Scholar
  19. Das S. 2007, MNRAS, 376, 1659ADSCrossRefGoogle Scholar
  20. Das S., Chattopadhyay I., Nandi A., Molteni D. 2014, MNRAS, 442, 251ADSCrossRefGoogle Scholar
  21. De Villiers J.-P., Hawley J. F., Krolik J. H., Hirose S. 2005, ApJ, 620, 878ADSCrossRefGoogle Scholar
  22. Fukue J. 1987, PASJ, 39, 309ADSGoogle Scholar
  23. Fukue J. 1990, PASJ, 42, 793ADSGoogle Scholar
  24. Fukumura K., Tsuruta S. 2004, ApJ, 611, 964ADSCrossRefGoogle Scholar
  25. Gierliński M., Newton J. 2006, MNRAS, 370, 837ADSCrossRefGoogle Scholar
  26. Guan X., Gammie C. F. 2009, ApJ, 697, 1901ADSCrossRefGoogle Scholar
  27. Hawley J. F. 2000, ApJ, 528, 462ADSCrossRefGoogle Scholar
  28. Hawley J. F. 2001, ApJ, 554, 534ADSCrossRefGoogle Scholar
  29. Hawley J. F., Krolik J. H. 2001, ApJ, 548, 348ADSCrossRefGoogle Scholar
  30. Hawley J. F., Krolik J. H. 2002, ApJ, 566, 164ADSCrossRefGoogle Scholar
  31. Hirose S., Krolik J. H., De Villiers J. P., Hawley J. F. 2004, ApJ, 606, 1083ADSCrossRefGoogle Scholar
  32. Hirose S., Krolik J. H., Stone J. M. 2006, ApJ, 640, 901ADSCrossRefGoogle Scholar
  33. Hopkins P. F., Quataert E. 2011, MNRAS, 415, 1027ADSCrossRefGoogle Scholar
  34. Ichimaru S. 1977, ApJ, 214, 840ADSCrossRefGoogle Scholar
  35. Igumenshchev I. V., Narayan R., Abramowicz M. A. 2003, ApJ, 592, 1042ADSCrossRefGoogle Scholar
  36. Iyer N., Nandi A., Mandal S. 2015, ApJ, 807, 108ADSCrossRefGoogle Scholar
  37. Johansen A., Levin Y. 2008, A&A, 490, 501ADSCrossRefGoogle Scholar
  38. McKinney J. C., Gammie C. F. 2004, ApJ, 611, 977ADSCrossRefGoogle Scholar
  39. Kato Y., Mineshige S., Shibata K. 2004, ApJ, 605, 307ADSCrossRefGoogle Scholar
  40. Kaufmann T., Mayer L., Wadsley J., Stadel J., Moore B. 2007, MNRAS, 375, 53ADSCrossRefGoogle Scholar
  41. King A. R., Pringle J. E., Livio M. 2007, MNRAS, 376, 1740ADSCrossRefGoogle Scholar
  42. Koide S., Shibata K., Kudoh T., Meier D. L. 2002, Science, 295, 1688ADSCrossRefGoogle Scholar
  43. Kotko I., Lasota J.-P. 2012, A&A, 545, A115ADSCrossRefGoogle Scholar
  44. Krolik J. H., Hirose S., Blaes O. 2007, ApJ, 664, 1045ADSCrossRefGoogle Scholar
  45. Landau L. D., Lifshitz E. D. 1959, Fluid Mechanics. New York, PergamonGoogle Scholar
  46. Lebedev S. V., Ciardi A., Ampleford D. J. et al. 2005, MNRAS, 361, 97ADSCrossRefGoogle Scholar
  47. Lu J. F., Yu K. N., Yuan F., Young E. C. M. 1997, A&A, 321, 665ADSGoogle Scholar
  48. Lu J. F., Yuan F. 1998, MNRAS, 295, 66ADSCrossRefGoogle Scholar
  49. Machida M., Matsumoto R. 2003, ApJ, 585, 429ADSCrossRefGoogle Scholar
  50. Machida M., Nakamura K. E., Matsumoto R. 2006, PASJ, 58, 193ADSCrossRefGoogle Scholar
  51. Mandal S., Chakrabarti S. K. 2005, Ap&SS, 297, 269ADSCrossRefGoogle Scholar
  52. Matsumoto R., Kato S., Fukue J., Okazaki A. T. 1984, PASJ, 36, 71ADSGoogle Scholar
  53. McKinney J., Blandford R. 2009, MNRAS, 394, L126ADSCrossRefGoogle Scholar
  54. Menou K. 2000, Science, 288, 2022ADSCrossRefGoogle Scholar
  55. Molteni D., Sponholtz H., Chakrabarti S. K. 1996, ApJ, 457, 805ADSCrossRefGoogle Scholar
  56. Molteni D., Toth G., Kuznetsov O. A. 1999, ApJ, 516, 411ADSCrossRefGoogle Scholar
  57. Narayan R., Yi I. 1995, ApJ, 452, 710ADSCrossRefGoogle Scholar
  58. Narayan R., Kato S., Honma F. 1997, ApJ, 476, 49ADSCrossRefGoogle Scholar
  59. Nandi A., Debnath D., Mandal S., Chakrabarti S. K. 2012, A&A, 542, 56ADSCrossRefGoogle Scholar
  60. Oda H., Machida M., Nakamura K. E., Matsumoto R. 2007, PASJ, 59, 457ADSCrossRefGoogle Scholar
  61. Oda H., Machida M., Nakamura K. E., Matsumoto R. 2010, ApJ, 712, 639ADSCrossRefGoogle Scholar
  62. Oda H., Machida M., Nakamura K. E., Matsumoto R., Narayan R. 2012, PASJ, 64, 15ADSCrossRefGoogle Scholar
  63. Okuda T., Teresi V., Toscano E., Molteni D. 2004, PASJ, 56, 547ADSCrossRefGoogle Scholar
  64. Okuda T., Teresi V., Molteni D. 2008, AIP Conference Proceedings, vol. 968, p. 417ADSCrossRefGoogle Scholar
  65. Paczyński B., Wiita P. J. 1980, A&A, 88, 23ADSGoogle Scholar
  66. Papaloizou J. C. B., Terquem C. 1997, MNRAS, 287, 771ADSCrossRefGoogle Scholar
  67. Parker E. N. 1966, ApJ, 145, 811ADSCrossRefGoogle Scholar
  68. Pudritz R. E., Norman C. A. 1986, Can. J. Phys., 64, 501ADSCrossRefGoogle Scholar
  69. Rajesh S. R., Mukhopadhyay B. 2010, MNRAS, 402, 961ADSCrossRefGoogle Scholar
  70. Rao A. R., Yadav J. S., Paul B. 2000, ApJ, 544, 443ADSCrossRefGoogle Scholar
  71. Samadi M., Abbassi S., Khajavi M. 2014, MNRAS, 437, 3124ADSCrossRefGoogle Scholar
  72. Sarkar B., Das S. 2015, ASInC, 12, 91Google Scholar
  73. Sarkar B., Das S. 2016, MNRAS, 461, 190ADSCrossRefGoogle Scholar
  74. Sarkar B., Das S., Mandal S. 2018, MNRAS, 473, 2415ADSCrossRefGoogle Scholar
  75. Shakura N. I., Sunyaev R. A. 1973, A&A, 24, 337ADSGoogle Scholar
  76. Shapiro S. L., Teukolsky S. A. 1983, Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects, New York, WileyGoogle Scholar
  77. Shibata K., Tajima T., Matsumoto R. 1990, ApJ, 350, 295ADSCrossRefGoogle Scholar
  78. Singh C. B., Chakrabarti S. K. 2011, MNRAS, 410, 2414ADSCrossRefGoogle Scholar
  79. Spruit H. C., Uzdensky D. A. 2005, ApJ, 629, 960ADSCrossRefGoogle Scholar
  80. Suková P., Janiuk A. 2015, MNRAS, 447, 1565ADSCrossRefGoogle Scholar
  81. Suková P., Charzyński S., Janiuk A. 2017, MNRAS, 472, 4327ADSCrossRefGoogle Scholar
  82. Ustyugova G. V., Koldoba A. V., Romanova M. M., Chechetkin V. M., Lovelace R. V. E. 1999, ApJ, 516, 221Google Scholar
  83. Yuan F. 2001, MNRAS, 324, 119Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Indian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations