\(M_{\bullet } - \sigma \) relation in spherical systems

Article
  • 19 Downloads

Abstract

To investigate the \(M_\bullet -\sigma \) relation, we consider realistic elliptical galaxy profiles that are taken to follow a single power-law density profile given by \(\rho (r) = \rho _{0}(r/ r_{0})^{-\gamma }\) or the Nuker intensity profile. We calculate the density using Abel’s formula in the latter case by employing the derived stellar potential; in both cases. We derive the distribution function f(E) of the stars in the presence of the supermassive black hole (SMBH) at the center and hence compute the line-of-sight (LoS) velocity dispersion as a function of radius. For the typical range of values for masses of SMBH, we obtain \(M_{\bullet } \propto \sigma ^{p}\) for different profiles. An analytical relation \(p = (2\gamma + 6)/(2 + \gamma )\) is found which is in reasonable agreement with observations (for \(\gamma = 0.75{-}1.4\), \(p = 3.6{-}5.3\)). Assuming that a proportionality relation holds between the black hole mass and bulge mass, \(M_{\bullet } =f M_\mathrm{b}\), and applying this to several galaxies, we find the individual best fit values of p as a function of f; also by minimizing \(\chi ^{2}\), we find the best fit global p and f. For Nuker profiles, we find that \(p = 3.81 \pm 0.004\) and \(f = (1.23 \pm 0.09)\times 10^{-3}\) which are consistent with the observed ranges.

Keywords

Galaxies: bulges galaxies: elliptical galaxies: kinematics and dynamics galaxies: nuclei galaxies: structure 

References

  1. Batiste M., Bentz M. C., Raimundo S. I., Vestergaard M., Onken C. A. 2017, ApJL, 838, L10ADSCrossRefGoogle Scholar
  2. Binney J., Merrifield M. 1998, Galactic Astronomy (Princeton, NJ: Princeton Univ. Press)Google Scholar
  3. Binney J., Tremaine S. 2008, Galactic Dynamics, 2nd ed., Princeton, NJ: Princeton Univ. PressGoogle Scholar
  4. Byun Y.-I. et al. 1996, AJ, 111, 1889Google Scholar
  5. Debattista V. P., Kazantzidis S., van den Bosch F. C. 2013, ApJ, 765, 23ADSCrossRefGoogle Scholar
  6. Faber S. M. et al. 1997, AJ, 114, 1771Google Scholar
  7. Ferrarese L. 2002, ApJ, 578, 90ADSCrossRefGoogle Scholar
  8. Ferrarese L., Ford H. 2005, Space Sci. Rev., 116, 523ADSCrossRefGoogle Scholar
  9. Ferrarese L., Merritt D. 2000, ApJ, 539, L9ADSCrossRefGoogle Scholar
  10. Gebhardt K. et al. 2000, ApJ, 539, L13ADSCrossRefGoogle Scholar
  11. Graham A. W. 2016, Galactic Bulges, 418, 263ADSCrossRefGoogle Scholar
  12. Graham A. W., Scott N. 2013, ApJ, 764, 151ADSCrossRefGoogle Scholar
  13. Gültekin K. et al. 2009, ApJ, 698, 198ADSCrossRefGoogle Scholar
  14. Häring N., Rix H.-W. 2004, ApJ, 604, L89ADSCrossRefGoogle Scholar
  15. King A. 2003, ApJ, 596, L27ADSCrossRefGoogle Scholar
  16. Kormendy J., Ho L. C. 2013, ARA&A, 51, 511ADSCrossRefGoogle Scholar
  17. Magorrian J. et al. 1998, AJ, 115, 2285Google Scholar
  18. Marconi A., Hunt L. K. 2003, ApJ, 589, L21ADSCrossRefGoogle Scholar
  19. McConnell N. J., Ma C.-P. 2013, ApJ, 764, 184ADSCrossRefGoogle Scholar
  20. Merritt D., Ferrarese L. 2001, ApJ, 547, 140ADSCrossRefGoogle Scholar
  21. Silk J., Rees M. J. 1998, A&A, 331, L1ADSGoogle Scholar
  22. Sivia D. S., Skilling J. 2006, Data analysis: A Bayesian tutorial, Oxford: Oxford University Press, p. 64MATHGoogle Scholar
  23. Stone N. C., Metzger B. D. 2016, MNRAS, 455, 859ADSCrossRefGoogle Scholar
  24. Tremaine S. et al. 2002, ApJ, 574, 740ADSCrossRefGoogle Scholar
  25. Wang J., Merritt D. 2004, ApJ, 600, 149ADSCrossRefGoogle Scholar
  26. Zhao H., Haehnelt M. G., Rees M. J. 2002, New A, 7, 385ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Indian Institute of AstrophysicsBangaloreIndia

Personalised recommendations