Could α-Klotho Unlock the Key Between Depression and Dementia in the Elderly: from Animal to Human Studies

Abstract

α-Klotho is known for its aging-related functions and is associated with neurodegenerative diseases, accelerated aging, premature morbidity, and mortality. Recent literature suggests that α-Klotho is also involved in the regulation of mental functions, such as cognition and psychosis. While most of studies of α-Klotho are focusing on its anti-aging functions and protective role in dementia, increasing evidence showed many shared symptoms between depression and dementia, while depression has been proposed as the preclinical stage of dementia such as Alzheimer’s disease (AD). To see whether and how α-Klotho can be a key biological link between depression and dementia, in this review, we first gathered the evidence on biological distribution and function of α-Klotho in psychiatric functions from animal studies to human clinical investigations with a focus on the regulation of cognition and mood. Then, we discussed and highlighted the potential common underlying mechanisms of α-Klotho between psychiatric diseases and cognitive impairment. Finally, we hypothesized that α-Klotho might serve as a neurobiological link between depression and dementia through the regulation of oxidative stress and inflammation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Availability of Data and Material

Not applicable.

References

  1. 1.

    Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390(6655):45–51. https://doi.org/10.1038/36285

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Ito S, Kinoshita S, Shiraishi N, Nakagawa S, Sekine S, Fujimori T, Nabeshima YI (2000) Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein. Mechanisms of development 98(1-2):115–119. https://doi.org/10.1016/s0925-4773(00)00439-1

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    German DC, Khobahy I, Pastor J, Kuro OM, Liu X (2012) Nuclear localization of Klotho in brain: an anti-aging protein. Neurobiol Aging 33 (7):1483 e1425-1430. doi:https://doi.org/10.1016/j.neurobiolaging.2011.12.018

  4. 4.

    Bloch L, Sineshchekova O, Reichenbach D, Reiss K, Saftig P, Kuro-o M, Kaether C (2009) Klotho is a substrate for alpha-, beta- and gamma-secretase. FEBS letters 583(19):3221–3224. https://doi.org/10.1016/j.febslet.2009.09.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Chen CD, Podvin S, Gillespie E, Leeman SE, Abraham CR (2007) Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci U S A 104(50):19796–19801. https://doi.org/10.1073/pnas.0709805104

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Imura A, Iwano A, Tohyama O, Tsuji Y, Nozaki K, Hashimoto N, Fujimori T, Nabeshima Y (2004) Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS letters 565(1-3):143–147. https://doi.org/10.1016/j.febslet.2004.03.090

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Hu MC, Shi M, Zhang J, Addo T, Cho HJ, Barker SL, Ravikumar P, Gillings N et al (2016) Renal production, uptake, and handling of circulating alphaKlotho. J Am Soc Nephrol 27(1):79–90. https://doi.org/10.1681/ASN.2014101030

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S et al (2006) Regulation of fibroblast growth factor-23 signaling by klotho. The Journal of biological chemistry 281(10):6120–6123. https://doi.org/10.1074/jbc.C500457200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S et al (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444(7120):770–774. https://doi.org/10.1038/nature05315

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Kuro-o M (2006) Klotho as a regulator of fibroblast growth factor signaling and phosphate/calcium metabolism. Curr Opin Nephrol Hypertens 15(4):437–441. https://doi.org/10.1097/01.mnh.0000232885.81142.83

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H et al (2005) Suppression of aging in mice by the hormone Klotho. Science (New York, NY) 309(5742):1829–1833. https://doi.org/10.1126/science.1112766

    CAS  Article  Google Scholar 

  12. 12.

    Liu HJ, Fergusson MM, Castilho RM, Liu J, Cao L, Chen JH, Malide D, Rovira II et al (2007) Augmented Wnt signaling in a mammalian model of accelerated aging. Science (New York, NY) 317(5839):803–806. https://doi.org/10.1126/science.1143578

    CAS  Article  Google Scholar 

  13. 13.

    Doi S, Zou Y, Togao O, Pastor JV, John GB, Wang L, Shiizaki K, Gotschall R et al (2011) Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem 286(10):8655–8665. https://doi.org/10.1074/jbc.M110.174037

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Yamamoto M, Clark JD, Pastor JV, Gurnani P, Nandi A, Kurosu H, Miyoshi M, Ogawa Y et al (2005) Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem 280(45):38029–38034. https://doi.org/10.1074/jbc.M509039200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG (2005) The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science (New York, NY) 310(5747):490–493. https://doi.org/10.1126/science.1114245

    CAS  Article  Google Scholar 

  16. 16.

    Cha SK, Hu MC, Kurosu H, Kuro-o M, Moe O, Huang CL (2009) Regulation of renal outer medullary potassium channel and renal K(+) excretion by Klotho. Mol Pharmacol 76(1):38–46. https://doi.org/10.1124/mol.109.055780

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A, Obuse C, Togashi K et al (2007) alpha-Klotho as a regulator of calcium homeostasis. Science (New York, NY) 316(5831):1615–1618. https://doi.org/10.1126/science.1135901

    CAS  Article  Google Scholar 

  18. 18.

    Xie J, Cha SK, An SW, Kuro OM, Birnbaumer L, Huang CL (2012) Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nat Commun 3:1238. https://doi.org/10.1038/ncomms2240

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Masuda H, Chikuda H, Suga T, Kawaguchi H, Kuro-o M (2005) Regulation of multiple ageing-like phenotypes by inducible klotho gene expression in klotho mutant mice. Mech Ageing Dev 126(12):1274–1283. https://doi.org/10.1016/j.mad.2005.07.007

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Kim Y, Kim JH, Nam YJ, Kong M, Kim YJ, Yu KH, Lee BC, Lee C (2006) Klotho is a genetic risk factor for ischemic stroke caused by cardioembolism in Korean females. Neurosci Lett 407(3):189–194. https://doi.org/10.1016/j.neulet.2006.08.039

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Shimoyama Y, Nishio K, Hamajima N, Niwa T (2009) KLOTHO gene polymorphisms G-395A and C1818T are associated with lipid and glucose metabolism, bone mineral density and systolic blood pressure in Japanese healthy subjects. Clin Chim Acta 406(1-2):134–138. https://doi.org/10.1016/j.cca.2009.06.011

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Mullin BH, Wilson SG, Islam FMA, Calautti M, Dick IM, Devine A, Prince RL (2005) Klotho gene polymorphisms are associated with osteocalcin levels but not bone density of aged postmenopausal women. Calcified Tissue International 77(3):145–151. https://doi.org/10.1007/s00223-004-0291-x

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Telci D, Dogan AU, Ozbek E, Polat EC, Simsek A, Cakir SS, Yeloglu HO, Sahin F (2011) KLOTHO gene polymorphism of G395A is associated with kidney stones. American journal of nephrology 33(4):337–343. https://doi.org/10.1159/000325505

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Wolf I, Laitman Y, Rubinek T, Abramovitz L, Novikov I, Beeri R, Kuro OM, Koeffler HP et al (2010) Functional variant of KLOTHO: a breast cancer risk modifier among BRCA1 mutation carriers of Ashkenazi origin. Oncogene 29(1):26–33. https://doi.org/10.1038/onc.2009.301

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Abulizi P, Zhou XH, Keyimu K, Luo M, Jin FQ (2017) Correlation between KLOTHO gene and mild cognitive impairment in the Uygur and Han populations of Xinjiang. Oncotarget 8(43):75174–75185. https://doi.org/10.18632/oncotarget.20655

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Hao Q, Ding X, Gao L, Yang M, Dong B (2016) G-395A polymorphism in the promoter region of the KLOTHO gene associates with reduced cognitive impairment among the oldest old. Age (Dordr) 38(1):7. https://doi.org/10.1007/s11357-015-9869-7

    Article  Google Scholar 

  27. 27.

    Cararo-Lopes MM, Mazucanti CHY, Scavone C, Kawamoto EM, Berwick DC (2017) The relevance of alpha-KLOTHO to the central nervous system: some key questions. Ageing research reviews 36:137–148. https://doi.org/10.1016/j.arr.2017.03.003

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Roman GC (2002) Vascular dementia may be the most common form of dementia in the elderly. J Neurol Sci 203-204:7–10. https://doi.org/10.1016/s0022-510x(02)00252-6

    Article  PubMed  Google Scholar 

  29. 29.

    Hoyer C, Sartorius A, Aksay SS, Bumb JM, Janke C, Thiel M, Haffner D, Leifheit-Nestler M et al (2018) Electroconvulsive therapy enhances the anti-ageing hormone Klotho in the cerebrospinal fluid of geriatric patients with major depression. Eur Neuropsychopharm 28(3):428–435. https://doi.org/10.1016/j.euroneuro.2017.12.012

    CAS  Article  Google Scholar 

  30. 30.

    Paroni G, Seripa D, Fontana A, D'Onofrio G, Gravina C, Urbano M, Addante F, Lozupone M et al (2017) Klotho gene and selective serotonin reuptake inhibitors: response to treatment in late-life major depressive disorder. Mol Neurobiol 54(2):1340–1351. https://doi.org/10.1007/s12035-016-9711-y

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Sartorius A, Gilles M, Pfeifer AM, Deuschle M, Hoyer C, Haffner D, Leifheit-Nestler M, Kranaster L (2019) Peripheral levels of the anti-aging hormone Klotho in patients with depression. J Neural Transm (Vienna) 126(6):771–776. https://doi.org/10.1007/s00702-019-02008-w

    Article  Google Scholar 

  32. 32.

    Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C (2014) Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol 13(8):788–794. https://doi.org/10.1016/S1474-4422(14)70136-X

    Article  Google Scholar 

  33. 33.

    Diniz BS, Butters MA, Albert SM, Dew MA, Reynolds CF 3rd (2013) Late-life depression and risk of vascular dementia and Alzheimer’s disease: systematic review and meta-analysis of community-based cohort studies. Br J Psychiatry 202(5):329–335. https://doi.org/10.1192/bjp.bp.112.118307

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Gracia-Garcia P, de la Camara C, Santabarbara J, Lopez-Anton R, Quintanilla MA, Ventura T, Marcos G, Campayo A et al (2015) Depression and incident Alzheimer disease: the impact of disease severity. Am J Geriatr Psychiatry 23(2):119–129. https://doi.org/10.1016/j.jagp.2013.02.011

    Article  PubMed  Google Scholar 

  35. 35.

    Zeki Al Hazzouri A, Vittinghoff E, Byers A, Covinsky K, Blazer D, Diem S, Ensrud KE, Yaffe K (2014) Long-term cumulative depressive symptom burden and risk of cognitive decline and dementia among very old women. J Gerontol A Biol Sci Med Sci 69(5):595–601. https://doi.org/10.1093/gerona/glt139

    Article  PubMed  Google Scholar 

  36. 36.

    Kaup AR, Byers AL, Falvey C, Simonsick EM, Satterfield S, Ayonayon HN, Smagula SF, Rubin SM et al (2016) Trajectories of depressive symptoms in older adults and risk of dementia. JAMA Psychiatry 73(5):525–531. https://doi.org/10.1001/jamapsychiatry.2016.0004

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Taylor WD, McQuoid DR, Payne ME, Zannas AS, MacFall JR, Steffens DC (2014) Hippocampus atrophy and the longitudinal course of late-life depression. Am J Geriatr Psychiatry 22(12):1504–1512. https://doi.org/10.1016/j.jagp.2013.11.004

    Article  PubMed  Google Scholar 

  38. 38.

    Jahn H (2013) Memory loss in Alzheimer’s disease. Dialogues Clin Neurosci 15(4):445–454. https://doi.org/10.31887/DCNS.2013.15.4/hjahn

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Butters MA, Becker JT, Nebes RD, Zmuda MD, Mulsant BH, Pollock BG, Reynolds CF 3rd (2000) Changes in cognitive functioning following treatment of late-life depression. Am J Psychiatry 157(12):1949–1954. https://doi.org/10.1176/appi.ajp.157.12.1949

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Beats BC, Sahakian BJ, Levy R (1996) Cognitive performance in tests sensitive to frontal lobe dysfunction in the elderly depressed. Psychol Med 26(3):591–603. https://doi.org/10.1017/s0033291700035662

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Chan YE, Chen MH, Tsai SJ, Bai YM, Tsai CF, Cheng CM, Su TP, Chang WH et al (2020) Treatment-resistant depression enhances risks of dementia and Alzheimer’s disease: a nationwide longitudinal study. J Affect Disord 274:806–812. https://doi.org/10.1016/j.jad.2020.05.150

    Article  PubMed  Google Scholar 

  42. 42.

    Almeida OP, Hankey GJ, Yeap BB, Golledge J, Flicker L (2017) Depression as a modifiable factor to decrease the risk of dementia. Transl Psychiat 7(5):e1117–e1117. https://doi.org/10.1038/tp.2017.90

    CAS  Article  Google Scholar 

  43. 43.

    Mirza SS, Wolters FJ, Swanson SA, Koudstaal PJ, Hofman A, Tiemeier H, Ikram MA (2016) 10-year trajectories of depressive symptoms and risk of dementia: a population-based study. Lancet Psychiatry 3(7):628–635. https://doi.org/10.1016/S2215-0366(16)00097-3

    Article  PubMed  Google Scholar 

  44. 44.

    Choi DW, Han KT, Jeon J, Jang SI, Kim SJ, Park EC (2019) Association between depressive-symptom trajectories and cognitive function in the late middle-aged and older population: results of the Korean Longitudinal Study of Ageing. Scientific reports 9(1):7807. https://doi.org/10.1038/s41598-019-44158-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Caraci F, Copani A, Nicoletti F, Drago F (2010) Depression and Alzheimer’s disease: neurobiological links and common pharmacological targets. Eur J Pharmacol 626(1):64–71. https://doi.org/10.1016/j.ejphar.2009.10.022

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Belanoff JK, Gross K, Yager A, Schatzberg AF (2001) Corticosteroids and cognition. J Psychiatr Res 35(3):127–145. https://doi.org/10.1016/s0022-3956(01)00018-8

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Thomas SJ, Larkin T (2019) Cognitive distortions in relation to plasma cortisol and oxytocin levels in major depressive disorder. Front Psychiatry 10:971. https://doi.org/10.3389/fpsyt.2019.00971

    Article  PubMed  Google Scholar 

  48. 48.

    Belanoff JK, Flores BH, Kalezhan M, Sund B, Schatzberg AF (2001) Rapid reversal of psychotic depression using mifepristone. J Clin Psychopharmacol 21(5):516–521. https://doi.org/10.1097/00004714-200110000-00009

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Pomara N, Doraiswamy PM, Tun H, Ferris S (2002) Mifepristone (RU 486) for Alzheimer’s disease. Neurology 58(9):1436. https://doi.org/10.1212/wnl.58.9.1436

    Article  PubMed  Google Scholar 

  50. 50.

    Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Muller FJ, Loring JF, Yamasaki TR, Poon WW et al (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A 106(32):13594–13599. https://doi.org/10.1073/pnas.0901402106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Terracciano A, Lobina M, Piras MG, Mulas A, Cannas A, Meirelles O, Sutin AR, Zonderman AB et al (2011) Neuroticism, depressive symptoms, and serum BDNF. Psychosom Med 73(8):638–642. https://doi.org/10.1097/PSY.0b013e3182306a4f

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Nagai T, Yamada K, Kim HC, Kim YS, Noda Y, Imura A, Nabeshima Y, Nabeshima T (2003) Cognition impairment in the genetic model of aging klotho gene mutant mice: a role of oxidative stress. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 17(1):50–52. https://doi.org/10.1096/fj.02-0448fje

    CAS  Article  Google Scholar 

  53. 53.

    Mencke R, Umbach AT, Wiggenhauser LM, Voelkl J, Olauson H, Harms G, Bulthuis M, Krenning G et al (2019) Klotho deficiency induces arteriolar hyalinosis in a trade-off with vascular calcification. Am J Pathol 189(12):2503–2515. https://doi.org/10.1016/j.ajpath.2019.08.006

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Laszczyk AM, F-Q S, Vo HT, Nettles D, Pugh PC, Overstreet-Wadiche L, King GD (2017) Klotho regulates postnatal neurogenesis and protects against age-related spatial memory loss. Neurobiology of Aging 59:41–54. https://doi.org/10.1016/j.neurobiolaging.2017.07.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Ullah M, Sun ZJ (2019) Klotho deficiency accelerates stem cells aging by impairing telomerase activity. J Gerontol a-Biol 74(9):1396–1407. https://doi.org/10.1093/gerona/gly261

    CAS  Article  Google Scholar 

  56. 56.

    Sahu A, Mamiya H, Shinde SN, Cheikhi A, Winter LL, Vo NV, Stolz D, Roginskaya V et al (2018) Age-related declines in alpha-Klotho drive progenitor cell mitochondrial dysfunction and impaired muscle regeneration. Nat Commun 9(1):4859. https://doi.org/10.1038/s41467-018-07253-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Masso A, Sanchez A, Bosch A, Gimenez-Llort L, Chillon M (2018) Secreted alpha Klotho isoform protects against age-dependent memory deficits. Mol Psychiatr 23(9):1937–1947. https://doi.org/10.1038/mp.2017.211

    CAS  Article  Google Scholar 

  58. 58.

    Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2(1):3–14. https://doi.org/10.1602/neurorx.2.1.3

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Leon J, Moreno AJ, Garay BI, Chalkley RJ, Burlingame AL, Wang D, Dubal DB (2017) Peripheral elevation of a klotho fragment enhances brain function and resilience in young, aging, and α-synuclein transgenic mice. Cell Reports 20(6):1360–1371. https://doi.org/10.1016/j.celrep.2017.07.024

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Arking DE, Krebsova A, Macek M Sr, Macek M Jr, Arking A, Mian IS, Fried L, Hamosh A et al (2002) Association of human aging with a functional variant of klotho. Proc Natl Acad Sci U S A 99(2):856–861. https://doi.org/10.1073/pnas.022484299

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Dubal DB, Yokoyama JS, Zhu L, Broestl L, Worden K, Wang D, Sturm VE, Kim D et al (2014) Life extension factor klotho enhances cognition. Cell Rep 7(4):1065–1076. https://doi.org/10.1016/j.celrep.2014.03.076

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Yokoyama JS, Sturm VE, Bonham LW, Klein E, Arfanakis K, Yu L, Coppola G, Kramer JH et al (2015) Variation in longevity gene KLOTHO is associated with greater cortical volumes. Annals of Clinical and Translational Neurology 2(3):215–230. https://doi.org/10.1002/acn3.161

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Mengel-From J, Soerensen M, Nygaard M, McGue M, Christensen K, Christiansen L (2016) Genetic variants in KLOTHO associate with cognitive function in the oldest old group. J Gerontol A Biol Sci Med Sci 71(9):1151–1159. https://doi.org/10.1093/gerona/glv163

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Semba RD, Cappola AR, Sun K, Bandinelli S, Dalal M, Crasto C, Guralnik JM, Ferrucci L (2011) Plasma klotho and cardiovascular disease in adults. J Am Geriatr Soc 59(9):1596–1601. https://doi.org/10.1111/j.1532-5415.2011.03558.x

    Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Semba RD, Moghekar AR, Hu J, Sun K, Turner R, Ferrucci L, O'Brien R (2014) Klotho in the cerebrospinal fluid of adults with and without Alzheimer’s disease. Neurosci Lett 558:37–40. https://doi.org/10.1016/j.neulet.2013.10.058

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Drew DA, Katz R, Kritchevsky S, Ix J, Shlipak M, Gutierrez OM, Newman A, Hoofnagle A et al (2017) Association between soluble klotho and change in kidney function: the health aging and body composition study. Journal of the American Society of Nephrology 28(6):1859–1866. https://doi.org/10.1681/Asn.2016080828

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Shardell M, Semba RD, Rosano C, Kalyani RR, Bandinelli S, Chia CW, Ferrucci L (2016) Plasma Klotho and cognitive decline in older adults: findings from the InCHIANTI Study. J Gerontol A Biol Sci Med Sci 71(5):677–682. https://doi.org/10.1093/gerona/glv140

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Keles N, Caliskan M, Dogan B, Keles NN, Kalcik M, Aksu F, Kostek O, Aung SM et al (2015) Low serum level of klotho is an early predictor of atherosclerosis. Tohoku J Exp Med 237(1):17–23. https://doi.org/10.1620/tjem.237.17

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Kalaria RN, Maestre GE, Arizaga R, Friedland RP, Galasko D, Hall K, Luchsinger JA, Ogunniyi A et al (2008) Alzheimer’s disease and vascular dementia in developing countries: prevalence, management, and risk factors. Lancet Neurol 7(9):812–826. https://doi.org/10.1016/S1474-4422(08)70169-8

    Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Dubal DB, Zhu L, Sanchez PE, Worden K, Broestl L, Johnson E, Ho K, Yu GQ et al (2015) Life extension factor klotho prevents mortality and enhances cognition in hAPP transgenic mice. J Neurosci 35(6):2358–2371. https://doi.org/10.1523/JNEUROSCI.5791-12.2015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Kuang X, Zhou HJ, Thorne AH, Chen XN, Li LJ, Du JR (2017) Neuroprotective effect of ligustilide through induction of alpha-secretase processing of both APP and Klotho in a mouse model of Alzheimer’s disease. Front Aging Neurosci 9:353. https://doi.org/10.3389/fnagi.2017.00353

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Masso A, Sanchez A, Gimenez-Llort L, Lizcano JM, Canete M, Garcia B, Torres-Lista V, Puig M et al (2015) Secreted and transmembrane alpha Klotho isoforms have different spatio-temporal profiles in the brain during aging and Alzheimer’s disease progression. PloS one 10(11):e0143623. https://doi.org/10.1371/journal.pone.0143623

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Zeng CY, Yang TT, Zhou HJ, Zhao Y, Kuang X, Duan W, Du JR (2019) Lentiviral vector-mediated overexpression of Klotho in the brain improves Alzheimer’s disease-like pathology and cognitive deficits in mice. Neurobiol Aging 78:18–28. https://doi.org/10.1016/j.neurobiolaging.2019.02.003

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Almeida OP, Morar B, Hankey GJ, Yeap BB, Golledge J, Jablensky A, Flicker L (2017) Longevity Klotho gene polymorphism and the risk of dementia in older men. Maturitas 101:1–5. https://doi.org/10.1016/j.maturitas.2017.04.005

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    de Vries CF, Staff RT, Harris SE, Chapko D, Williams DS, Reichert P, Ahearn T, McNeil CJ et al (2017) Klotho, APOEepsilon4, cognitive ability, brain size, atrophy, and survival: a study in the Aberdeen Birth Cohort of 1936. Neurobiol Aging 55:91–98. https://doi.org/10.1016/j.neurobiolaging.2017.02.019

    Article  PubMed  Google Scholar 

  76. 76.

    Erickson CM, Schultz SA, Oh JM, Darst BF, Ma Y, Norton D, Betthauser T, Gallagher CL et al (2019) KLOTHO heterozygosity attenuates APOE4-related amyloid burden in preclinical AD. Neurology 92(16):e1878–e1889. https://doi.org/10.1212/WNL.0000000000007323

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Belloy ME, Napolioni V, Han SS, Le Guen Y, Greicius MD, Alzheimer’s Disease Neuroimaging I (2020) Association of Klotho-VS heterozygosity with risk of Alzheimer disease in individuals who carry APOE4. JAMA Neurol 77(7):849–862. https://doi.org/10.1001/jamaneurol.2020.0414

    Article  PubMed  Google Scholar 

  78. 78.

    Porter T, Burnham SC, Milicic L, Savage G, Maruff P, Lim YY, Ames D, Masters CL et al (2019) Klotho allele status is not associated with Abeta and APOE epsilon4-related cognitive decline in preclinical Alzheimer’s disease. Neurobiol Aging 76:162–165. https://doi.org/10.1016/j.neurobiolaging.2018.12.014

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Dubal DB, Yokoyama JS (2020) Longevity gene KLOTHO and Alzheimer disease-a better fate for individuals who carry APOE epsilon4. JAMA Neurol 77(7):798–800. https://doi.org/10.1001/jamaneurol.2020.0112

    Article  PubMed  Google Scholar 

  80. 80.

    Sedighi M, Baluchnejadmojarad T, Fallah S, Moradi N, Afshin-Majd S, Roghani M (2020) The association between circulating klotho and dipeptidyl peptidase-4 activity and inflammatory cytokines in elderly patients with Alzheimer disease. Basic Clin Neurosci 11(3):349–357. https://doi.org/10.32598/bcn.11.2.1747.1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Brombo G, Bonetti F, Ortolani B, Morieri ML, Bosi C, Passaro A, Vigna GB, Borgna C et al (2018) Lower plasma klotho concentrations are associated with vascular dementia but not late-onset Alzheimer’s disease. Gerontology 64(5):414–421. https://doi.org/10.1159/000488318

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Mytych J, Solek P, Koziorowski M (2019) Klotho modulates ER-mediated signaling crosstalk between prosurvival autophagy and apoptotic cell death during LPS challenge. Apoptosis 24(1-2):95–107. https://doi.org/10.1007/s10495-018-1496-1

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    Banerjee S, Zhao Y, Sarkar PS, Rosenblatt KP, Tilton RG, Choudhary S (2013) Klotho ameliorates chemically induced endoplasmic reticulum (ER) stress signaling. Cell Physiol Biochem 31(4-5):659–672. https://doi.org/10.1159/000350085

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Gold PW, Licinio J, Pavlatou MG (2013) Pathological parainflammation and endoplasmic reticulum stress in depression: potential translational targets through the CNS insulin, klotho and PPAR-gamma systems. Mol Psychiatr 18(2):154–165. https://doi.org/10.1038/mp.2012.167

    CAS  Article  Google Scholar 

  85. 85.

    Mytych J, Solek P, Tabecka-Lonczynska A, Koziorowski M (2019) Klotho-mediated changes in shelterin complex promote cytotoxic autophagy and apoptosis in amitriptyline-treated hippocampal neuronal cells. Mol Neurobiol 56(10):6952–6963. https://doi.org/10.1007/s12035-019-1575-5

    CAS  Article  PubMed  Google Scholar 

  86. 86.

    Wolf EJ, Morrison FG, Sullivan DR, Logue MW, Guetta RE, Stone A, Schichman SA, McGlinchey RE et al (2019) The goddess who spins the thread of life: Klotho, psychiatric stress, and accelerated aging. Brain Behav Immun 80:193–203. https://doi.org/10.1016/j.bbi.2019.03.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Prather AA, Epel ES, Arenander J, Broestl L, Garay BI, Wang D, Dubal DB (2015) Longevity factor klotho and chronic psychological stress. Transl Psychiatry 5(6):e585. https://doi.org/10.1038/tp.2015.81

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Green RC, Cupples LA, Kurz A, Auerbach S, Go R, Sadovnick D, Duara R, Kukull WA, Chui H, Edeki T, Griffith PA, Friedland RP, Bachman D, Farrer L (2003) Depression as a risk factor for Alzheimer disease - the MIRAGE study. Arch Neurol-Chicago 60 (5):753-759. doi:https://doi.org/10.1001/archneur.60.5.753

  89. 89.

    Ownby RL, Crocco E, Acevedo A, John V, Loewenstein D (2006) Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Arch Gen Psychiatry 63(5):530–538. https://doi.org/10.1001/archpsyc.63.5.530

    Article  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Caraci F, Spampinato SF, Morgese MG, Tascedda F, Salluzzo MG, Giambirtone MC, Caruso G, Munafo A et al (2018) Neurobiological links between depression and AD: the role of TGF-beta1 signaling as a new pharmacological target. Pharmacol Res 130:374–384. https://doi.org/10.1016/j.phrs.2018.02.007

    CAS  Article  PubMed  Google Scholar 

  91. 91.

    Barnes DE, Yaffe K, Byers AL, McCormick M, Schaefer C, Whitmer RA (2012) Midlife vs late-life depressive symptoms and risk of dementia: differential effects for Alzheimer disease and vascular dementia. Arch Gen Psychiatry 69(5):493–498. https://doi.org/10.1001/archgenpsychiatry.2011.1481

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Dafsari FS, Jessen F (2020) Depression-an underrecognized target for prevention of dementia in Alzheimer’s disease. Transl Psychiatry 10(1):160. https://doi.org/10.1038/s41398-020-0839-1

    Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Kendler KS, Karkowski LM, Prescott CA (1999) Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry 156(6):837–841. https://doi.org/10.1176/ajp.156.6.837

    CAS  Article  PubMed  Google Scholar 

  94. 94.

    Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J et al (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science (New York, NY) 301(5631):386–389. https://doi.org/10.1126/science.1083968

    CAS  Article  Google Scholar 

  95. 95.

    Kim JM, Stewart R, Kim SW, Yang SJ, Shin IS, Kim YH, Yoon JS (2007) Interactions between life stressors and susceptibility genes (5-HTTLPR and BDNF) on depression in Korean elders. Biol Psychiatry 62(5):423–428. https://doi.org/10.1016/j.biopsych.2006.11.020

    CAS  Article  PubMed  Google Scholar 

  96. 96.

    Jellinger KA (2009) Recent advances in our understanding of neurodegeneration. Journal of Neural Transmission 116(9):1111–1162. https://doi.org/10.1007/s00702-009-0240-y

    CAS  Article  PubMed  Google Scholar 

  97. 97.

    Rodrigues R, Petersen RB, Perry G (2014) Parallels between major depressive disorder and Alzheimer’s disease: role of oxidative stress and genetic vulnerability. Cellular and Molecular Neurobiology 34(7):925–949. https://doi.org/10.1007/s10571-014-0074-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Palta P, Samuel LJ, Miller ER 3rd, Szanton SL (2014) Depression and oxidative stress: results from a meta-analysis of observational studies. Psychosom Med 76(1):12–19. https://doi.org/10.1097/PSY.0000000000000009

    CAS  Article  PubMed  Google Scholar 

  99. 99.

    Black CN, Bot M, Scheffer PG, Cuijpers P, Penninx BW (2015) Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology 51:164–175. https://doi.org/10.1016/j.psyneuen.2014.09.025

    CAS  Article  PubMed  Google Scholar 

  100. 100.

    Szebeni A, Szebeni K, DiPeri T, Chandley MJ, Crawford JD, Stockmeier CA, Ordway GA (2014) Shortened telomere length in white matter oligodendrocytes in major depression: potential role of oxidative stress. The international journal of neuropsychopharmacology 17(10):1579–1589. https://doi.org/10.1017/S1461145714000698

    CAS  Article  PubMed  Google Scholar 

  101. 101.

    Pandya CD, Howell KR, Pillai A (2013) Antioxidants as potential therapeutics for neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 46:214–223. https://doi.org/10.1016/j.pnpbp.2012.10.017

    CAS  Article  PubMed  Google Scholar 

  102. 102.

    Resende R, Moreira PI, Proenca T, Deshpande A, Busciglio J, Pereira C, Oliveira CR (2008) Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease. Free Radic Biol Med 44(12):2051–2057. https://doi.org/10.1016/j.freeradbiomed.2008.03.012

    CAS  Article  PubMed  Google Scholar 

  103. 103.

    Hartl D, Schuldt V, Forler S, Zabel C, Klose J, Rohe M (2012) Presymptomatic alterations in energy metabolism and oxidative stress in the APP23 mouse model of Alzheimer disease. J Proteome Res 11(6):3295–3304. https://doi.org/10.1021/pr300021e

    CAS  Article  PubMed  Google Scholar 

  104. 104.

    Ansari MA, Scheff SW (2010) Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J Neuropathol Exp Neurol 69(2):155–167. https://doi.org/10.1097/NEN.0b013e3181cb5af4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Kuro-o M (2008) Klotho as a regulator of oxidative stress and senescence. Biol Chem 389(3):233–241. https://doi.org/10.1515/BC.2008.028

    CAS  Article  PubMed  Google Scholar 

  106. 106.

    Utsugi T, Ohno T, Ohyama Y, Uchiyama T, Saito Y, Matsumura Y, Aizawa H, Itoh H et al (2000) Decreased insulin production and increased insulin sensitivity in the klotho mutant mouse, a novel animal model for human aging. Metabolism: clinical and experimental 49(9):1118–1123. https://doi.org/10.1053/meta.2000.8606

    CAS  Article  Google Scholar 

  107. 107.

    Saito Y, Yamagishi T, Nakamura T, Ohyama Y, Aizawa H, Suga T, Matsumura Y, Masuda H et al (1998) Klotho protein protects against endothelial dysfunction. Biochemical and biophysical research communications 248(2):324–329. https://doi.org/10.1006/bbrc.1998.8943

    CAS  Article  PubMed  Google Scholar 

  108. 108.

    Hong-Jing Zhou C-YZ, Yang T-T, Long F-Y, Kuang X, Jun-Rong D (2018) Lentivirus-mediated klotho up-regulation improves aging-related memory deficits and oxidative stress in senescence-accelerated mouse prone-8 mice. Life Sciences 200:56–62. https://doi.org/10.1016/j.lfs.2018.03.027

    CAS  Article  PubMed  Google Scholar 

  109. 109.

    Goldsmith DR, Rapaport MH, Miller BJ (2016) A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 21(12):1696–1709. https://doi.org/10.1038/mp.2016.3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Ng A, Tam WW, Zhang MW, Ho CS, Husain SF, McIntyre RS, Ho RC (2018) IL-1beta, IL-6, TNF- alpha and CRP in elderly patients with depression or Alzheimer’s disease: systematic review and meta-analysis. Scientific reports 8(1):12050. https://doi.org/10.1038/s41598-018-30487-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Myint AM, Leonard BE, Steinbusch HW, Kim YK (2005) Th1, Th2, and Th3 cytokine alterations in major depression. J Affect Disord 88(2):167–173. https://doi.org/10.1016/j.jad.2005.07.008

    CAS  Article  PubMed  Google Scholar 

  112. 112.

    Lee KM, Kim YK (2006) The role of IL-12 and TGF-beta1 in the pathophysiology of major depressive disorder. Int Immunopharmacol 6(8):1298–1304. https://doi.org/10.1016/j.intimp.2006.03.015

    CAS  Article  PubMed  Google Scholar 

  113. 113.

    Sutcigil L, Oktenli C, Musabak U, Bozkurt A, Cansever A, Uzun O, Sanisoglu SY, Yesilova Z et al (2007) Pro- and anti-inflammatory cytokine balance in major depression: effect of sertraline therapy. Clin Dev Immunol 2007:76396–76396. https://doi.org/10.1155/2007/76396

    Article  PubMed  Google Scholar 

  114. 114.

    Mocali A, Cedrola S, Della Malva N, Bontempelli M, Mitidieri VA, Bavazzano A, Comolli R, Paoletti F et al (2004) Increased plasma levels of soluble CD40, together with the decrease of TGF beta 1, as possible differential markers of Alzheimer disease. Exp Gerontol 39(10):1555–1561. https://doi.org/10.1016/j.exger.2004.07.007

    CAS  Article  PubMed  Google Scholar 

  115. 115.

    Tesseur I, Zou K, Esposito L, Bard F, Berber E, Can JV, Lin AH, Crews L et al (2006) Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer’s pathology. J Clin Invest 116(11):3060–3069. https://doi.org/10.1172/JCI27341

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L, Masliah E, Mucke L (2001) TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 7(5):612–618. https://doi.org/10.1038/87945

    CAS  Article  PubMed  Google Scholar 

  117. 117.

    Moreno JA, Izquierdo MC, Sanchez-Nino MD, Suarez-Alvarez B, Lopez-Larrea C, Jakubowski A, Blanco J, Ramirez R et al (2011) The inflammatory cytokines TWEAK and TNFalpha reduce renal klotho expression through NFkappaB. J Am Soc Nephrol 22(7):1315–1325. https://doi.org/10.1681/ASN.2010101073

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Thurston RD, Larmonier CB, Majewski PM, Ramalingam R, Midura-Kiela M, Laubitz D, Vandewalle A, Besselsen DG, Muhlbauer M, Jobin C, Kiela PR, Ghishan FK (2010) Tumor necrosis factor and interferon-gamma down-regulate Klotho in mice with colitis. Gastroenterology 138 (4):1384-1394, 1394.e1381-1382. doi:https://doi.org/10.1053/j.gastro.2009.12.002

  119. 119.

    Martin-Nunez E, Donate-Correa J, Ferri C, Lopez-Castillo A, Delgado-Molinos A, Hernandez-Carballo C, Perez-Delgado N, Rodriguez-Ramos S, Cerro-Lopez P, Tagua VG, Mora-Fernandez C, Navarro-Gonzalez JF (2020) Association between serum levels of Klotho and inflammatory cytokines in cardiovascular disease: a case-control study. Aging (Albany NY) 12 (2):1952-1964. doi:10.18632/aging.102734

  120. 120.

    Maekawa Y, Ishikawa K, Yasuda O, Oguro R, Hanasaki H, Kida I, Takemura Y, Ohishi M et al (2009) Klotho suppresses TNF-alpha-induced expression of adhesion molecules in the endothelium and attenuates NF-kappaB activation. Endocrine 35(3):341–346. https://doi.org/10.1007/s12020-009-9181-3

    CAS  Article  PubMed  Google Scholar 

  121. 121.

    Krick S, Baumlin N, Aller SP, Aguiar C, Grabner A, Sailland J, Mendes E, Schmid A et al (2017) Klotho inhibits interleukin-8 secretion from cystic fibrosis airway epithelia. Scientific reports 7(1):14388. https://doi.org/10.1038/s41598-017-14811-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Doi S, Zou YL, Togao O, Pastor JV, John GB, Wang L, Shiizaki K, Gotschall R et al (2011) Klotho inhibits transforming growth factor-beta 1 (TGF-beta 1) signaling and suppresses renal fibrosis and cancer metastasis in mice. Journal of Biological Chemistry 286(10):8655–8665. https://doi.org/10.1074/jbc.M110.174037

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundational of China [#9184910028 for RL].

Author information

Affiliations

Authors

Contributions

XG and RL conceived and wrote the article. CXZ, YL, ZS, HX, GM, and QD critically reviewed the manuscript.

Corresponding author

Correspondence to Rena Li.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Li, Y., Sun, Z. et al. Could α-Klotho Unlock the Key Between Depression and Dementia in the Elderly: from Animal to Human Studies. Mol Neurobiol (2021). https://doi.org/10.1007/s12035-021-02313-0

Download citation

Keywords

  • α-Klotho
  • Aging
  • Dementia
  • Depression