Infliximab Can Improve Traumatic Brain Injury by Suppressing the Tumor Necrosis Factor Alpha Pathway

Abstract

Traumatic brain injury (TBI) has both high morbidity and mortality rates and can negatively influence physical and mental health, while also causing extreme burden to both individual and society. Hitherto, there is no effective treatment for TBI because of the complexity of the brain anatomy and physiology. Currently, management strategies mainly focus on controlling inflammation after TBI. Tumor necrotizing factor alpha (TNF-α) plays a crucial role in neuroinflammation post-TBI. TNF-α acts as the initiator of downstream inflammatory signaling pathways, and its activation can trigger a series of inflammatory reactions. Infliximab is a monoclonal anti-TNF-α antibody that reduces inflammation. Herein, we review the latest findings pertaining to the role of TNF-α and infliximab in TBI. We seek to present a comprehensive clinical application prospect of infliximab in TBI and, thus, discuss potential strategies of infliximab in treating TBI.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data Availability

The authors confirm that I have included a citation for available data in my reference section.

References

  1. 1.

    Haarbauer-Krupa J, Haileyesus T, Gilchrist J, Mack KA, Law CS, Joseph A (2019) Fall-related traumatic brain injury in children ages 0-4 years. J Saf Res 70:127–133. https://doi.org/10.1016/j.jsr.2019.06.003

    Article  Google Scholar 

  2. 2.

    Cusimano MD, Saarela O, Hart K, Zhang S, McFaull SR (2020) A population-based study of fall-related traumatic brain injury identified in older adults in hospital emergency departments. Neurosurg Focus 49(4):E20. https://doi.org/10.3171/2020.7.FOCUS20520

    Article  PubMed  Google Scholar 

  3. 3.

    Osborn AJ, Mathias JL, Fairweather-Schmidt AK, Anstey KJ (2017) Anxiety and comorbid depression following traumatic brain injury in a community-based sample of young, middle-aged and older adults. J Affect Disord 213:214–221. https://doi.org/10.1016/j.jad.2016.09.045

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Holm L, Cassidy JD, Carroll LJ, Borg J, Neurotrauma Task Force on Mild Traumatic Brain Injury of the WHO Collaborating Centre (2005) Summary of the WHO collaborating centre for Neurotrauma Task Force on mild traumatic brain injury. J Rehabil Med 37(3):137–141. https://doi.org/10.1080/16501970510027321

    Article  PubMed  Google Scholar 

  5. 5.

    Ladak AA, Enam SA, Ibrahim MT (2019) A review of the molecular mechanisms of traumatic brain injury. World Neurosurg 131:126–132. https://doi.org/10.1016/j.wneu.2019.07.039

    Article  PubMed  Google Scholar 

  6. 6.

    Barrett JP, Henry RJ, Shirey KA, Doran SJ, Makarevich OD, Ritzel RM, Meadows VA, Vogel SN et al (2020) Interferon-β plays a detrimental role in experimental traumatic brain injury by enhancing neuroinflammation that drives chronic neurodegeneration. J Neurosci 40(11):2357–2370. https://doi.org/10.1523/JNEUROSCI.2516-19.2020

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Olde Heuvel F, Holl S, Chandrasekar A, Li Z, Wang Y, Rehman R, Förstner P, Sinske D et al (2019) STAT6 mediates the effect of ethanol on neuroinflammatory response in TBI. Brain Behav Immun 81:228–246. https://doi.org/10.1016/j.bbi.2019.06.019

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Cagliani J, Yang WL, McGinn JT, Wang Z, Wang P (2019) Anti-interferon-α receptor 1 antibodies attenuate inflammation and organ injury following hemorrhagic shock. J Trauma Acute Care Surg 86(5):881–890. https://doi.org/10.1097/TA.0000000000002214

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Heydari F, Golban M, Majidinejad S (2019) Traumatic brain injury in older adults presenting to the emergency department: epidemiology, outcomes and risk factors predicting the prognosis. Adv J Emerg Med 4(2):e19. https://doi.org/10.22114/ajem.v0i0.170

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Eriksen N, Pakkenberg B, Rostrup E, Okonkwo DO, Mathern B, Shutter LA, Strong AJ, Woitzik J et al (2019) Neurostereologic lesion volumes and spreading depolarizations in severe traumatic brain injury patients: a pilot study. Neurocrit Care 30(3):557–568. https://doi.org/10.1007/s12028-019-00692-w

    Article  PubMed  Google Scholar 

  11. 11.

    Veenith TV, Carter EL, Geeraerts T et al (2016) Pathophysiologic mechanisms of cerebral ischemia and diffusion hypoxia in traumatic brain injury. JAMA Neurol. 73(5):542–550. https://doi.org/10.1001/jamaneurol.2016.0091

    Article  PubMed  Google Scholar 

  12. 12.

    Launey Y, Tim D Fryer, Young T Hong, et al. (2020) Spatial and temporal pattern of ischemia and abnormal vascular function following traumatic brain injury. JAMA Neurol 77(3):339–349. https://doi.org/10.1001/jamaneurol.2019.3854

    Article  PubMed  Google Scholar 

  13. 13.

    Stevens RD, Koehler RC (2019) Pathophysiological insights into spreading depolarization in severe traumatic brain injury. Neurocrit Care 30(3):569–571. https://doi.org/10.1007/s12028-019-00705-8

    Article  PubMed  Google Scholar 

  14. 14.

    Sigfridsson E, Marangoni M, Johnson JA, Hardingham GE, Fowler JH, Horsburgh K (2018) Astrocyte-specific overexpression of Nrf2 protects against optic tract damage and behavioural alterations in a mouse model of cerebral hypoperfusion. Sci Rep 8(1):12552. https://doi.org/10.1038/s41598-018-30675-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Alawieh A, Langley EF, Weber S, Adkins D, Tomlinson S (2018) Identifying the role of complement in triggering neuroinflammation after traumatic brain injury. J Neurosci 38(10):2519–2532. https://doi.org/10.1523/JNEUROSCI.2197-17.2018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Wei L, Zhang J, Zhang B, Geng J, Tan Q, Wang L, Chen Z, Feng H et al (2020) Complement C3 participates in the function and mechanism of traumatic brain injury at simulated high altitude. Brain Res 1726:146423. https://doi.org/10.1016/j.brainres.2019.146423

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Witcher KG, Bray CE, Dziabis JE, McKim DB, Benner BN, Rowe RK, Kokiko-Cochran ON, Popovich PG et al (2018) Traumatic brain injury-induced neuronal damage in the somatosensory cortex causes formation of rod-shaped microglia that promote astrogliosis and persistent neuroinflammation. Glia. 66(12):2719–2736. https://doi.org/10.1002/glia.23523

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Zhang Z, Zhang Z, Lu H, Yang Q, Wu H, Wang J (2017) Microglial polarization and inflammatory mediators after intracerebral hemorrhage. Mol Neurobiol 54(3):1874–1886. https://doi.org/10.1007/s12035-016-9785-6

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Lv Y, Sun B, Lu X-X, Liu Y-l, Li M, Xu L-X, Feng C-X, Ding X et al (2020) The role of microglia mediated pyroptosis in neonatal hypoxic-ischemic brain damage. Biochem Biophys Res Commun 521(4):933–938. https://doi.org/10.1016/j.bbrc.2019.11.003

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Zhou T, Huang Z, Sun X, Zhu X, Zhou L, Li M, Cheng B, Liu X et al (2017) Microglia polarization with M1/M2 phenotype changes in rd1 mouse model of retinal degeneration. Front Neuroanat 11:77. https://doi.org/10.3389/fnana.2017.00077

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Xiang J, Zhang X, Fu J, Wang H, Zhao Y (2019) USP18 overexpression protects against focal cerebral ischemia injury in mice by suppressing microglial activation. Neuroscience. 419:121–128. https://doi.org/10.1016/j.neuroscience.2019.09.001

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Kumar A, Stoica BA, Loane DJ, Yang M, Abulwerdi G, Khan N, Kumar A, Thom SR et al (2017) Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury. J Neuroinflammation 14(1):47. https://doi.org/10.1186/s12974-017-0819-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Gan D, Wu S, Chen B, Zhang J (2020) Application of the zebrafish traumatic brain injury model in assessing cerebral inflammation. Zebrafish. 17(2):73–82. https://doi.org/10.1089/zeb.2019.1793

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Tarasov VV, Svistunov AA, Chubarev VN, Sologova SS, Mukhortova P, Levushkin D, Somasundaram SG, Kirkland CE et al (2020) Alterations of astrocytes in the context of schizophrenic dementia. Front Pharmacol 10:1612. https://doi.org/10.3389/fphar.2019.01612

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 541(7638):481–487. https://doi.org/10.1038/nature21029

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Okada S, Hara M, Kobayakawa K, Matsumoto Y, Nakashima Y (2018) Astrocyte reactivity and astrogliosis after spinal cord injury. Neurosci Res 126:39–43. https://doi.org/10.1016/j.neures.2017.10.004

    Article  PubMed  Google Scholar 

  27. 27.

    Danzer SC (2019) A hit, a hit-a very palpable hit: mild TBI and the development of epilepsy. Epilepsy Curr 19(4):261–263. https://doi.org/10.1177/1535759719854758

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, Coppola G, Khakh BS et al (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature. 532(7598):195–200. https://doi.org/10.1038/nature17623

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Xu X, Gao W, Cheng S, Yin D, Li F, Wu Y, Sun D, Zhou S et al (2017) Anti-inflammatory and immunomodulatory mechanisms of atorvastatin in a murine model of traumatic brain injury. J Neuroinflammation 14(1):167. https://doi.org/10.1186/s12974-017-0934-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Russo MV, Latour LL, McGavern DB (2018) Distinct myeloid cell subsets promote meningeal remodeling and vascular repair after mild traumatic brain injury. Nat Immunol 19(5):442–452. https://doi.org/10.1038/s41590-018-0086-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Deora A, Hegde S, Lee J, Choi CH, Chang Q, Lee C, Eaton L, Tang H et al (2017) Transmembrane TNF-dependent uptake of anti-TNF antibodies. MAbs. 9(4):680–695. https://doi.org/10.1080/19420862.2017.1304869

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Espirito Santo AI, Ersek A, Freidin A, Feldmann M, Stoop AA, Horwood NJ (2015) Selective inhibition of TNFR1 reduces osteoclast numbers and is differentiated from anti-TNF in a LPS-driven model of inflammatory bone loss. Biochem Biophys Res Commun 464(4):1145–1150. https://doi.org/10.1016/j.bbrc.2015.07.094

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Natarajan K, Abraham P, Kota R, Isaac B (2018) NF-κB-iNOS-COX2-TNF α inflammatory signaling pathway plays an important role in methotrexate induced small intestinal injury in rats. Food Chem Toxicol 118:766–783. https://doi.org/10.1016/j.fct.2018.06.040

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Bhatnagar S, Panguluri SK, Gupta SK, Dahiya S, Lundy RF, Kumar A (2010) Tumor necrosis factor-α regulates distinct molecular pathways and gene networks in cultured skeletal muscle cells. PLoS One 5(10):e13262. https://doi.org/10.1371/journal.pone.0013262

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Candelario-Jalil E, Taheri S, Yang Y, Sood R, Grossetete M, Estrada EY, Fiebich BL, Rosenberg GA (2007) Cyclooxygenase inhibition limits blood-brain barrier disruption following intracerebral injection of tumor necrosis factor-alpha in the rat. J Pharmacol Exp Ther 323(2):488–498. https://doi.org/10.1124/jpet.107.127035

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Rempe RG, Hartz AMS, Bauer B (2016) Matrix metalloproteinases in the brain and blood-brain barrier: versatile breakers and makers. J Cereb Blood Flow Metab 36(9):1481–1507. https://doi.org/10.1177/0271678X16655551

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Shin HS, Zhao Z, Satsu H, Totsuka M, Shimizu M (2011) Synergistic effect of tumor necrosis factor-alpha and hydrogen peroxide on the induction of IL-8 production in human intestinal Caco-2 cells. Inflammation. 34(5):440–447. https://doi.org/10.1007/s10753-010-9251-y

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Zeni P, Doepker E, Schulze-Topphoff U, Huewel S, Tenenbaum T, Galla HJ (2007) MMPs contribute to TNF-alpha-induced alteration of the blood-cerebrospinal fluid barrier in vitro. Am J Physiol Cell Physiol 293(3):C855–C864. https://doi.org/10.1152/ajpcell.00470.2006

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Mei WQ, Hu HZ, Liu Y, Li ZC, Wang WG (2015) Infliximab is superior to other biological agents for treatment of active ulcerative colitis: a meta-analysis. World J Gastroenterol 21(19):6044–6051. https://doi.org/10.3748/wjg.v21.i19.6044

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Mitoma H, Horiuchi T, Tsukamoto H, Ueda N (2018) Molecular mechanisms of action of anti-TNF-α agents - comparison among therapeutic TNF-α antagonists. Cytokine. 101:56–63. https://doi.org/10.1016/j.cyto.2016.08.014

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Hoshiyama T, Matsueda Y, Tono T, Arinuma Y, Nagai T, Hirohata S (2018) Differential influences of Fc gamma receptor blocking on the effects of certolizumab pegol and infliximab on human monocytes. Mod Rheumatol 28(3):506–512. https://doi.org/10.1080/14397595.2017.1354796

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Pergel A, Tümkaya L, Çolakoğlu MK, Demiral G, Kalcan S, Özdemir A, Mercantepe T, Yilmaz A (2019) Effects of infliximab against carbon tetrachloride-induced intestinal injury via lipid peroxidation and apoptosis. Hum Exp Toxicol 38(11):1275–1282. https://doi.org/10.1177/0960327119867758

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Lossi L, Castagna C, Merighi A (2018) Caspase-3 mediated cell death in the normal development of the mammalian cerebellum. Int J Mol Sci 19(12):3999. https://doi.org/10.3390/ijms19123999

    Article  PubMed Central  Google Scholar 

  44. 44.

    Lügering A, Schmidt M, Lügering N, Pauels HG, Domschke W, Kucharzik T (2001) Infliximab induces apoptosis in monocytes from patients with chronic active Crohn’s disease by using a caspase-dependent pathway. Gastroenterology. 121(5):1145–1157. https://doi.org/10.1053/gast.2001.28702

    Article  PubMed  Google Scholar 

  45. 45.

    Tayman C, Aydemir S, Yakut I, Serkant U, Ciftci A, Arslan E, Koç O (2016) TNF-α blockade efficiently reduced severe intestinal damage in necrotizing enterocolitis. J Investig Surg 29(4):209–217. https://doi.org/10.3109/08941939.2015.1127449

    Article  Google Scholar 

  46. 46.

    Dadsetan S, Balzano T, Forteza J, Agusti A, Cabrera-Pastor A, Taoro-Gonzalez L, Hernandez-Rabaza V, Gomez-Gimenez B et al (2016) Infliximab reduces peripheral inflammation, neuroinflammation, and extracellular GABA in the cerebellum and improves learning and motor coordination in rats with hepatic encephalopathy. J Neuroinflammation 13(1):245. https://doi.org/10.1186/s12974-016-0710-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Koizumi K, Hoshiai M, Katsumata N, Toda T, Kise H, Hasebe Y, Kono Y, Sunaga Y et al (2018) Infliximab regulates monocytes and regulatory T cells in Kawasaki disease. Pediatr Int 60(9):796–802. https://doi.org/10.1111/ped.13555

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Kincheski GC, Valentim IS, Clarke JR, Cozachenco D, Castelo-Branco MTL, Ramos-Lobo AM, Rumjanek VMBD, Donato J Jr et al (2017) Chronic sleep restriction promotes brain inflammation and synapse loss, and potentiates memory impairment induced by amyloid-β oligomers in mice. Brain Behav Immun 64:140–151. https://doi.org/10.1016/j.bbi.2017.04.007

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Ungar B, Levy I, Yavne Y, et al. Optimizing anti-TNF-α therapy: serum levels of infliximab and adalimumab are associated with mucosal healing in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol. 2016, 14(4):550–557.e2. doi:https://doi.org/10.1016/j.cgh.2015.10.025.

  50. 50.

    de Carvalho JF, Dos Santos MNP, de Oliveira JMV, Lanty Silva ANS, de Araujo RPC, Cardozo JB (2018) Evaluation of the safety and satisfaction of rheumatic patients with accelerated infliximab infusion. Adv Rheumatol 58(1):22. https://doi.org/10.1186/s42358-018-0016-x

    Article  PubMed  Google Scholar 

  51. 51.

    Tasdemir C, Tasdemir S, Vardi N, Ates B, Parlakpinar H, Kati B, Karaaslan MG, Acet A (2012) Protective effect of infliximab on ischemia/reperfusion-induced damage in rat kidney. Ren Fail 34(9):1144–1149. https://doi.org/10.3109/0886022X.2012.717490

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Liu F, Ai F, Tian L, Liu S, Zhao L, Wang X (2016) Infliximab enhances the therapeutic effects of 5-fluorouracil resulting in tumor regression in colon cancer. Onco Targets Ther 9:5999–6008. https://doi.org/10.2147/OTT.S109342

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Ferrari G, Bignami F, Giacomini C, Franchini S, Rama P (2013) Safety and efficacy of topical infliximab in a mouse model of ocular surface scarring. Invest Ophthalmol Vis Sci 54(3):1680–1688. https://doi.org/10.1167/iovs.12-10782

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Zhang H, Sui JN, Gao L, Guo J. Subcutaneous administration of infliximab-attenuated silica-induced lung fibrosis. Int J Occup Med Environ Health. 2018, 31(4):503–515. doi:https://doi.org/10.13075/ijomeh.1896.01037.

  55. 55.

    Takeshita M, Suzuki K, Kikuchi J, Izumi K, Kurasawa T, Yoshimoto K, Amano K, Takeuchi T (2015) Infliximab and etanercept have distinct actions but similar effects on cytokine profiles in rheumatoid arthritis. Cytokine. 75(2):222–227. https://doi.org/10.1016/j.cyto.2015.04.011

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Habib R, Wahdan SA, Gad AM, Azab SS (2019) Infliximab abrogates cadmium-induced testicular damage and spermiotoxicity via enhancement of steroidogenesis and suppression of inflammation and apoptosis mediators. Ecotoxicol Environ Saf 182:109398. https://doi.org/10.1016/j.ecoenv.2019.109398

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Kurt A, Tumkaya L, Turut H, Cure MC, Cure E, Kalkan Y, Sehitoglu I, Acipayam A (2015) Protective effects of infliximab on lung injury induced by methotrexate. Arch Bronconeumol 51(11):551–557. https://doi.org/10.1016/j.arbres.2015.03.018

    Article  PubMed  Google Scholar 

  58. 58.

    Yucel AF, Pergel A, Aydin I, Alacam H, Karabicak I, Kesicioglu T, Tumkaya L, Kalkan Y et al (2015) Effect of infliximab on acute hepatic ischemia/reperfusion injury in rats. Int J Clin Exp Med 8(11):21287–21294

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Akdogan RA, Kalkan Y, Tumkaya L (2014) Influence of infliximab pretreatment on ischemia/reperfusion injury in rat intestine. Folia Histochem Cytobiol 52(1):36–41. https://doi.org/10.5603/FHC.2014.0004

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Wojtal KA, Rogler G, Scharl M, Biedermann L, Frei P, Fried M, Weber A, Eloranta JJ et al (2012) Fc gamma receptor CD64 modulates the inhibitory activity of infliximab. PLoS One 7(8):e43361. https://doi.org/10.1371/journal.pone.0043361

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Lichtenstein L, Ron Y, Kivity S, Ben-Horin S, Israeli E, Fraser GM, Dotan I, Chowers Y et al (2015) Infliximab-related infusion reactions: systematic review. J Crohns Colitis 9(9):806–815. https://doi.org/10.1093/ecco-jcc/jjv096

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Rosenberg JJ, Martin SW, Seely JE et al (2001) Development of a novel, nonimmunogenic, soluble human TNF receptor type I (sTNFR-I) construct in the baboon. J Appl Physiol (1985) 91(5):2213–2223. https://doi.org/10.1152/jappl.2001.91.5.2213

    CAS  Article  Google Scholar 

  63. 63.

    Dai H, Guzman J, Chen B, Costabel U (2005) Production of soluble tumor necrosis factor receptors and tumor necrosis factor-alpha by alveolar macrophages in sarcoidosis and extrinsic allergic alveolitis. Chest. 127(1):251–256. https://doi.org/10.1378/chest.127.1.251

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Ebert EC (2009) Infliximab and the TNF-alpha system. Am J Physiol Gastrointest Liver Physiol 296(3):G612–G620. https://doi.org/10.1152/ajpgi.90576.2008

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Kanayama K, Nakamura K, Ogino H, Sumida Y, Ihara E, Akiho H, Takayanagi R (2011) Th1 responses are more susceptible to infliximab-mediated immunosuppression than Th17 responses. Dig Dis Sci 56(12):3525–3533. https://doi.org/10.1007/s10620-011-1780-1

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Likhitpanichkul M, Torre OM, Gruen J, Walter BA, Hecht AC, Iatridis JC (2016) Do mechanical strain and TNF-α interact to amplify pro-inflammatory cytokine production in human annulus fibrosus cells? J Biomech 49(7):1214–1220. https://doi.org/10.1016/j.jbiomech.2016.02.029

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Silva DAAD, Silva MVD, Barros CCO et al (2018) TNF-α blockade impairs in vitro tuberculous granuloma formation and down modulate Th1, Th17 and Treg cytokines. PLoS One 13(3):e0194430. https://doi.org/10.1371/journal.pone.0194430

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Villalba N, Sackheim AM, Nunez IA, Hill-Eubanks DC, Nelson MT, Wellman GC, Freeman K (2017) Traumatic brain injury causes endothelial dysfunction in the systemic microcirculation through arginase-1-dependent uncoupling of endothelial nitric oxide synthase. J Neurotrauma 34(1):192–203. https://doi.org/10.1089/neu.2015.4340

    Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Benhamou Y, Miranda S, Armengol G, Harouki N, Drouot L, Zahr N, Thuillez C, Boyer O et al (2015) Infliximab improves endothelial dysfunction in a mouse model of antiphospholipid syndrome: Role of reduced oxidative stress. Vasc Pharmacol 71:93–101. https://doi.org/10.1016/j.vph.2015.03.014

    CAS  Article  Google Scholar 

  70. 70.

    Eastman CL, D'Ambrosio R, Ganesh T (2020) Modulating neuroinflammation and oxidative stress to prevent epilepsy and improve outcomes after traumatic brain injury. Neuropharmacology. 172:107907. https://doi.org/10.1016/j.neuropharm.2019.107907

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Popa-Wagner A, Mitran S, Sivanesan S, Chang E, Buga AM (2013) ROS and brain diseases: the good, the bad, and the ugly. Oxidative Med Cell Longev 2013:963520–963514. https://doi.org/10.1155/2013/963520

    Article  Google Scholar 

  72. 72.

    Hussain T, Tan B, Yin Y, Blachier F, Tossou MC, Rahu N (2016) Oxidative stress and inflammation: what polyphenols can do for us? Oxidative Med Cell Longev 2016:7432797–7432799. https://doi.org/10.1155/2016/7432797

    CAS  Article  Google Scholar 

  73. 73.

    Virdis A, Duranti E, Rossi C, Dell'Agnello U, Santini E, Anselmino M, Chiarugi M, Taddei S et al (2015) Tumour necrosis factor-alpha participates on the endothelin-1/nitric oxide imbalance in small arteries from obese patients: role of perivascular adipose tissue. Eur Heart J 36(13):784–794. https://doi.org/10.1093/eurheartj/ehu072

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Şahin TD, Gocmez SS, Duruksu G, Yazir Y, Utkan T (2020) Infliximab prevents dysfunction of the vas deferens by suppressing inflammation and oxidative stress in rats with chronic stress. Life Sci 250:117545. https://doi.org/10.1016/j.lfs.2020.117545

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Tuleta I, França CN, Wenzel D, Fleischmann B, Nickenig G, Werner N, Skowasch D (2014) Hypoxia-induced endothelial dysfunction in apolipoprotein E-deficient mice; effects of infliximab and L-glutathione. Atherosclerosis. 236(2):400–410. https://doi.org/10.1016/j.atherosclerosis.2014.08.021

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Guven C, Borcek AO, Cemil B, Kurt G, Yildirim Z, Ucankus NL, Kilic N, Ceviker N (2010) Neuroprotective effects of infliximab in experimental spinal cord ischemic injury. J Clin Neurosci 17(12):1563–1567. https://doi.org/10.1016/j.jocn.2010.04.027

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Arango-Dávila CA, Vera A, Londoño AC, Echeverri AF, Cañas F, Cardozo CF, Orozco JL, Rengifo J et al (2015) Soluble or soluble/membrane TNF-α inhibitors protect the brain from focal ischemic injury in rats. Int J Neurosci 125(12):936–940. https://doi.org/10.3109/00207454.2014.980906

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Chen AQ, Fang Z, Chen XL, Yang S, Zhou YF, Mao L, Xia YP, Jin HJ et al (2019) Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic stroke. Cell Death Dis 10(7):487. https://doi.org/10.1038/s41419-019-1716-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Mishra SK, Kumar BS, Khushu S, Singh AK, Gangenahalli G (2017) Early monitoring and quantitative evaluation of macrophage infiltration after experimental traumatic brain injury: a magnetic resonance imaging and flow cytometric analysis. Mol Cell Neurosci 78:25–34. https://doi.org/10.1016/j.mcn.2016.11.008

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Ruud TE, Gundersen Y, Krohn CD, Sveen O, Aasen AO (2013) Effects of infliximab and hydrocortisone on in vitro cytokine responses after stimulation with lipopolysaccharide. Surg Infect 14(1):30–34. https://doi.org/10.1089/sur.2011.093

    Article  Google Scholar 

  81. 81.

    Hostenbach S, D'haeseleer M, Kooijman R, De Keyser J (2016) The pathophysiological role of astrocytic endothelin-1. Prog Neurobiol 144:88–102. https://doi.org/10.1016/j.pneurobio.2016.04.009

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Chen LX, Zhang WF, Wang M, Jia PF (2018) Relationship of calcitonin gene-related peptide with disease progression and prognosis of patients with severe traumatic brain injury. Neural Regen Res 13(10):1782–1786. https://doi.org/10.4103/1673-5374.238619

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Bao Z, Fan L, Zhao L, Xu X, Liu Y, Chao H, Liu N, You Y et al (2019) Silencing of A20 aggravates neuronal death and inflammation after traumatic brain injury: a potential trigger of necroptosis. Front Mol Neurosci 12:222. https://doi.org/10.3389/fnmol.2019.00222

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Abdelrahman AM, Al Suleimani YM, Ashique M, Manoj P, Ali BH (2018) Effect of infliximab and tocilizumab on fructose-induced hyperinsulinemia and hypertension in rats. Biomed Pharmacother 105:182–186. https://doi.org/10.1016/j.biopha.2018.05.118

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Neri M, Frati A, Turillazzi E, Cantatore S, Cipolloni L, di Paolo M, Frati P, la Russa R et al (2018) Immunohistochemical evaluation of aquaporin-4 and its correlation with CD68, IBA-1, HIF-1α, GFAP, and CD15 expressions in fatal traumatic brain injury. Int J Mol Sci 19(11):3544. https://doi.org/10.3390/ijms19113544

    CAS  Article  PubMed Central  Google Scholar 

  86. 86.

    Bürgler C, Vinay K, Häfliger S, Klötgen HW, Yawalkar N (2019) Infliximab reduces activated myeloid dendritic cells, different macrophage subsets and CXCR3-positive cells in granuloma annulare. J Dermatol 46(9):808–811. https://doi.org/10.1111/1346-8138.14981

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Main BS, Villapol S, Sloley SS, Barton DJ, Parsadanian M, Agbaegbu C, Stefos K, McCann MS et al (2018) Apolipoprotein E4 impairs spontaneous blood brain barrier repair following traumatic brain injury. Mol Neurodegener 13(1):17. https://doi.org/10.1186/s13024-018-0249-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Krukowski K, Chou A, Feng X, Tiret B, Paladini MS, Riparip LK, Chaumeil M, Lemere C et al (2018) Traumatic brain injury in aged mice induces chronic microglia activation, synapse loss, and complement-dependent memory deficits. Int J Mol Sci 19(12):3753. https://doi.org/10.3390/ijms19123753

    CAS  Article  PubMed Central  Google Scholar 

  89. 89.

    Chen Y, Meng J, Bi F, EK7 regulates NLRP3 inflammasome activation and neuroinflammation post-traumatic brain injury [published correction appears in Front Mol Neurosci. et al (2019) 15;12:247]. Front Mol Neurosci. 2019(12):202. https://doi.org/10.3389/fnmol.2019.00202

  90. 90.

    Furtak A, Wedrychowicz AM, Sladek M, Wedrychowicz A, Fyderek K, Starzyk J (2020) Infliximab therapy could decrease the risk of the development of thyroid disorders in pediatric patients with Crohn’s disease. Front Endocrinol (Lausanne). 11:558897. https://doi.org/10.3389/fendo.2020.558897

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Zhuang X, Tian Z, Feng R, Li M, Li T, Zhou G, Qiu Y, Chen B et al (2020) Fecal microbiota alterations associated with clinical and endoscopic response to infliximab therapy in Crohn’s disease. Inflamm Bowel Dis 26(11):1636–1647. https://doi.org/10.1093/ibd/izaa253

    Article  PubMed  Google Scholar 

  92. 92.

    Kim TH, Lee SS, Park W, Song YW, Suh CH, Kim S, Lee YN, Yoo DH (2020) A 5-year retrospective analysis of drug survival, safety, and effectiveness of the infliximab biosimilar CT-P13 in patients with rheumatoid arthritis and ankylosing spondylitis. Clin Drug Investig 40(6):541–553. https://doi.org/10.1007/s40261-020-00907-5

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Zhejiang Province (Grant No. LY19H170001).

Author information

Affiliations

Authors

Contributions

XL designed the study. YZ, RF, BOAB, YZ, and XL prepared the first draft and revised the manuscript. All authors approved the final paper.

Corresponding author

Correspondence to Xuehong Liu.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

All authors agreed to publish this article.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Fan, R., Botchway, B.O.A. et al. Infliximab Can Improve Traumatic Brain Injury by Suppressing the Tumor Necrosis Factor Alpha Pathway. Mol Neurobiol (2021). https://doi.org/10.1007/s12035-021-02293-1

Download citation

Keywords

  • Traumatic brain injury
  • Infliximab
  • Tumor necrotizing factor alpha (TNF-α)
  • Inflammation