Abstract
Epilepsy is a common and serious complication of subarachnoid hemorrhage (SAH), giving rise to increased morbidity and mortality. It’s difficult to identify patients at high risk of epilepsy and the application of anti-epileptic drugs (AEDs) following SAH is a controversial topic. Therefore, it’s pressingly needed to gain a better understanding of the risk factors, underlying mechanisms and the optimization of therapeutic strategies for epilepsy after SAH. Neuroinflammation, characterized by microglial activation and the release of inflammatory cytokines, has drawn growing attention due to its influence on patients with epilepsy after SAH. In this review, we discuss the risk factors for epilepsy after SAH and emphasize the critical role of microglia. Then we discuss how various molecules arising from pathophysiological changes after SAH activate specific receptors such as TLR4, NLRP3, RAGE, P2X7R and initiate the downstream inflammatory pathways. Additionally, we focus on the significant responses implicated in epilepsy including neuronal excitotoxicity, the disruption of blood-brain barrier (BBB) and the change of immune responses. As the application of AEDs for seizure prophylaxis after SAH remains controversial, the regulation of neuroinflammation targeting the key pathological molecules could be a promising therapeutic method. While neuroinflammation appears to contribute to epilepsy after SAH, more comprehensive experiments on their relationships are needed.
This is a preview of subscription content, access via your institution.



Data Availability
All material and datasets are available as required.
Abbreviations
- SAH:
-
subarachnoid hemorrhage
- CNS:
-
central nervous system
- AEDs:
-
anti-epileptic drugs
- BBB:
-
blood-brain barrier
- MCA:
-
middle cerebral artery
- NCSz:
-
nonconvulsive seizures
- VAM:
-
vessel-associated microglia
- MMP-9:
-
Matrix metalloproteinase 9
- HMGB1:
-
high mobility group box-1
- VSMCs:
-
vascular smooth muscle cells
- HO:
-
heme oxygenase
- CO:
-
carbon monoxide
- NMDA:
-
N-methyl-D-aspartate
- TLR4:
-
Toll-like receptor 4
- NLRP3:
-
NOD-like receptor 3
- RAGE:
-
receptor for advanced glycation end products
- P2X7R:
-
P2X7 receptor
- NF-κB:
-
nuclear factor-κB
- MAPKs:
-
mitogen-activated protein kinases
- AP-1:
-
transcription factor activator protein-1
- NEK7:
-
NIMA related kinase 7
- TWIK2:
-
two-pore domain weak inwardly rectifying K + channel 2
- Kir2:
-
the inward rectifier K+
- CLICs:
-
Cl − intracellular channels
- ELISA:
-
enzyme-linked immunosorbent assay
- TGF-βR:
-
transforming growth factor-β receptor
- MLV:
-
meningeal lymphatic vessels
- GR:
-
glucocorticoid receptor
- ANXA1:
-
annexin A1
- (VPA):
-
valproic acid
References
- 1.
Ramos MB, Teixeira MJ, Figueiredo EG (2018) Seizures and Epilepsy following Subarachnoid Hemorrhage: A Review on Incidence, Risk Factors, Outcome and Treatment. Braz Neurosurg (No.3):206–212
- 2.
Ibrahim GM, Fallah A, Macdonald RL (2013) Clinical, laboratory, and radiographic predictors of the occurrence of seizures following aneurysmal subarachnoid hemorrhage. J Neurosurg 119(2):347–352. https://doi.org/10.3171/2013.3.Jns122097
- 3.
Baticulon C, Rivera, Legaspi, Lopez (2020) Predictive Factors for Seizures and Efficacy of Antiepileptic Drugs in Patients with Aneurysmal Subarachnoid Hemorrhage(Article). Acta Medica Philippina (No.2):101–108
- 4.
Huttunen J, Kurki MI, von Und Zu Fraunberg M, Koivisto T, Ronkainen A, Rinne J, Jääskeläinen JE, Kälviäinen R et al (2015) Epilepsy after aneurysmal subarachnoid hemorrhage: A population-based, long-term follow-up study. Neurology 84(22):2229–2237. https://doi.org/10.1212/wnl.0000000000001643
- 5.
Nathan SK, Brahme IS, Kashkoush AI, Anetakis K, Jankowitz BT, Thirumala PD (2018) Risk factors for in-hospital seizures and new-onset epilepsy in coil embolization of aneurysmal subarachnoid hemorrhage. World Neurosurg 115:e523–e531. https://doi.org/10.1016/j.wneu.2018.04.086
- 6.
Hirano T, Enatsu R, Iihoshi S, Mikami T, Honma T, Ohnishi H, Mikuni N (2019) Effects of Hemosiderosis on epilepsy following subarachnoid hemorrhage. Neurol Med Chir (Tokyo) 59(1):27–32. https://doi.org/10.2176/nmc.oa.2018-0125
- 7.
Raper DM, Starke RM, Komotar RJ, Allan R, Connolly ES Jr (2013) Seizures after aneurysmal subarachnoid hemorrhage: A systematic review of outcomes. World Neurosurg 79(5–6):682–690. https://doi.org/10.1016/j.wneu.2012.08.006
- 8.
Choi KS, Chun HJ, Yi HJ, Ko Y, Kim YS, Kim JM (2009) Seizures and epilepsy following aneurysmal subarachnoid hemorrhage : Incidence and risk factors. J Korean Neurosurg Soc 46(2):93–98. https://doi.org/10.3340/jkns.2009.46.2.93
- 9.
Ohman J (1990) Hypertension as a risk factor for epilepsy after aneurysmal subarachnoid hemorrhage and surgery. Neurosurgery 27(4):578–581. https://doi.org/10.1097/00006123-199010000-00012
- 10.
Boling W, Kore L (2020) Subarachnoid hemorrhage-related epilepsy. Acta Neurochir Suppl 127:21–25. https://doi.org/10.1007/978-3-030-04615-6_4
- 11.
Baumann CR, Schuknecht B, Lo Russo G, Cossu M, Citterio A, Andermann F, Siegel AM (2006) Seizure outcome after resection of cavernous malformations is better when surrounding hemosiderin-stained brain also is removed. Epilepsia 47(3):563–566. https://doi.org/10.1111/j.1528-1167.2006.00468.x
- 12.
Claassen J, Albers D, Schmidt JM, De Marchis GM, Pugin D, Falo CM, Mayer SA, Cremers S et al (2014) Nonconvulsive seizures in subarachnoid hemorrhage link inflammation and outcome. Ann Neurol 75(5):771–781. https://doi.org/10.1002/ana.24166
- 13.
Chaudhry SR, Stoffel-Wagner B, Kinfe TM, Gresir E, Vatter H, Dietrich D, Lamprecht A, Muhammad S (2017) Elevated systemic IL-6 levels in patients with aneurysmal subarachnoid hemorrhage is an unspecific marker for post-SAH complications. Int J Mol Sci (No.12):2580
- 14.
Zheng SF, Lin P, Lin ZY, Shang-Guan HC, Chen GR, Zhang YB, Lin YX, Kang DZ et al (2019) Lower serum Iron and hemoglobin levels are associated with acute seizures in patients with ruptured cerebral aneurysms. Neurocrit Care 31(3):501–506. https://doi.org/10.1007/s12028-019-00746-z
- 15.
Ludwiczek S, Aigner E, Theurl I, Weiss G (2003) Cytokine-mediated regulation of iron transport in human monocytic cells. Blood 101(10):4148–4154. https://doi.org/10.1182/blood-2002-08-2459
- 16.
Okada T, Suzuki H (2020) Mechanisms of neuroinflammation and inflammatory mediators involved in brain injury following subarachnoid hemorrhage. Histol Histopathol 35(7):623–636. https://doi.org/10.14670/hh-18-208
- 17.
Xu Z, Shi WH, Xu LB, Shao MF, Chen ZP, Zhu GC, Hou Q (2019) Resident microglia activate before peripheral monocyte infiltration and p75NTR blockade reduces microglial activation and early brain injury after subarachnoid hemorrhage. ACS Chem Neurosci 10(1):412–423. https://doi.org/10.1021/acschemneuro.8b00298
- 18.
Zheng ZV, Lyu H, Lam SYE, Lam PK, Poon WS, Wong GKC (2020) The dynamics of microglial polarization reveal the resident Neuroinflammatory responses after subarachnoid hemorrhage. Transl Stroke Res 11(3):433–449. https://doi.org/10.1007/s12975-019-00728-5
- 19.
Radon AM, Schneider UC, Turkowski K, Ghori A, Brandenburg S, Heppner F, Vajkoczy P (2010) Microglia activation after aneurysmal subarachnoid hemorrhage (aSAH) - characterization of the cytokine expression profile. Eur J Med Res 15:144–144
- 20.
Schneider UC, Davids AM, Brandenburg S, Müller A, Elke A, Magrini S, Atangana E, Turkowski K et al (2015) Microglia inflict delayed brain injury after subarachnoid hemorrhage. Acta Neuropathol 130(2):215–231. https://doi.org/10.1007/s00401-015-1440-1
- 21.
Akamatsu Y, Pagan VA, Hanafy KA (2020) The role of TLR4 and HO-1 in neuroinflammation after subarachnoid hemorrhage. J Neurosci Res 98(3):549–556. https://doi.org/10.1002/jnr.24515
- 22.
Coulibaly AP, Provencio JJ (2020) Aneurysmal subarachnoid hemorrhage: An overview of inflammation-induced cellular changes. Neurotherapeutics 17(2):436–445. https://doi.org/10.1007/s13311-019-00829-x
- 23.
Geraghty JR, Davis JL, Testai FD (2019) Neuroinflammation and microvascular dysfunction after experimental subarachnoid hemorrhage: Emerging components of early brain injury related to outcome. Neurocrit Care 31(2):373–389. https://doi.org/10.1007/s12028-019-00710-x
- 24.
Morrison HW, Filosa JA (2019) Stroke and the neurovascular unit: Glial cells, sex differences, and hypertension. Am J Physiol Cell Physiol 316(3):C325–c339. https://doi.org/10.1152/ajpcell.00333.2018
- 25.
Koizumi T, Kerkhofs D, Mizuno T, Steinbusch HWM, Foulquier S (2019) Vessel-associated immune cells in cerebrovascular diseases: From perivascular macrophages to vessel-associated microglia. Front Neurosci 13:1291. https://doi.org/10.3389/fnins.2019.01291
- 26.
Matsumoto J, Dohgu S, Takata F, Machida T, Bölükbaşi Hatip FF, Hatip-Al-Khatib I, Yamauchi A, Kataoka Y (2018) TNF-α-sensitive brain pericytes activate microglia by releasing IL-6 through cooperation between IκB-NFκB and JAK-STAT3 pathways. Brain Res 1692:34–44. https://doi.org/10.1016/j.brainres.2018.04.023
- 27.
Klement W, Garbelli R, Zub E, Rossini L, Tassi L, Girard B, Blaquiere M, Bertaso F et al (2018) Seizure progression and inflammatory mediators promote pericytosis and pericyte-microglia clustering at the cerebrovasculature. Neurobiol Dis 113:70–81. https://doi.org/10.1016/j.nbd.2018.02.002
- 28.
Pan P, Zhao H, Zhang X, Li Q, Qu J, Zuo S, Yang F, Liang G et al (2020) Cyclophilin a signaling induces pericyte-associated blood-brain barrier disruption after subarachnoid hemorrhage. J Neuroinflammation 17(1):16. https://doi.org/10.1186/s12974-020-1699-6
- 29.
Sakuma R, Kawahara M, Nakano-Doi A, Takahashi A, Tanaka Y, Narita A, Kuwahara-Otani S, Hayakawa T et al (2016) Brain pericytes serve as microglia-generating multipotent vascular stem cells following ischemic stroke. J Neuroinflammation 13(1):57. https://doi.org/10.1186/s12974-016-0523-9
- 30.
Dang B, Shen H, Li H, Zhu M, Guo C, He W (2016) Matrix metalloproteinase 9 may be involved in contraction of vascular smooth muscle cells in an in vitro rat model of subarachnoid hemorrhage. Mol Med Rep 14(5):4279–4284. https://doi.org/10.3892/mmr.2016.5736
- 31.
Wang L, Zhang Z, Liang L, Wu Y, Zhong J, Sun X (2019) Anti-high mobility group box-1 antibody attenuated vascular smooth muscle cell phenotypic switching and vascular remodelling after subarachnoid haemorrhage in rats. Neurosci Lett 708:134338. https://doi.org/10.1016/j.neulet.2019.134338
- 32.
Wan W, Ding Y, Xie Z, Li Q, Yan F, Budbazar E, Pearce WJ, Hartman R et al (2019) PDGFR-β modulates vascular smooth muscle cell phenotype via IRF-9/SIRT-1/NF-κB pathway in subarachnoid hemorrhage rats. J Cereb Blood Flow Metab 39(7):1369–1380. https://doi.org/10.1177/0271678x18760954
- 33.
Rymo SF, Gerhardt H, Wolfhagen Sand F, Lang R, Uv A, Betsholtz C (2011) A two-way communication between microglial cells and angiogenic sprouts regulates angiogenesis in aortic ring cultures. PLoS One 6(1):e15846. https://doi.org/10.1371/journal.pone.0015846
- 34.
Kacimi R, Giffard RG, Yenari MA (2011) Endotoxin-activated microglia injure brain derived endothelial cells via NF-κB, JAK-STAT and JNK stress kinase pathways. J Inflamm 8:7. https://doi.org/10.1186/1476-9255-8-7
- 35.
Eyo UB, Murugan M, Wu LJ (2017) Microglia-neuron communication in epilepsy. Glia 65(1):5–18. https://doi.org/10.1002/glia.23006
- 36.
Chugh D, Ali I, Bakochi A, Bahonjic E, Etholm L, Ekdahl CT (2015) Alterations in brain inflammation, synaptic proteins, and adult hippocampal neurogenesis during Epileptogenesis in mice lacking Synapsin2. PLoS One 10(7):e0132366. https://doi.org/10.1371/journal.pone.0132366
- 37.
Zhao X, Liao Y, Morgan S, Mathur R, Feustel P, Mazurkiewicz J, Qian J, Chang J et al (2018) Noninflammatory changes of microglia are sufficient to cause epilepsy. Cell Rep 22(8):2080–2093. https://doi.org/10.1016/j.celrep.2018.02.004
- 38.
Cai W, Liu S, Hu M, Sun X, Qiu W, Zheng S, Hu X, Lu Z (2018) Post-stroke DHA treatment protects against acute ischemic brain injury by skewing macrophage polarity toward the M2 phenotype. Transl Stroke Res 9(6):669–680. https://doi.org/10.1007/s12975-018-0662-7
- 39.
Schallner N, Pandit R, LeBlanc R 3rd, Thomas AJ, Ogilvy CS, Zuckerbraun BS, Gallo D, Otterbein LE et al (2015) Microglia regulate blood clearance in subarachnoid hemorrhage by heme oxygenase-1. J Clin Invest 125(7):2609–2625. https://doi.org/10.1172/jci78443
- 40.
Suzuki H (2019) Inflammation: A good research target to improve outcomes of poor-grade subarachnoid hemorrhage. Transl Stroke Res 10(6):597–600. https://doi.org/10.1007/s12975-019-00713-y
- 41.
Maciel CB, Gilmore EJ (2016) Seizures and Epileptiform patterns in SAH and their relation to outcomes. J Clin Neurophysiol 33(3):183–195. https://doi.org/10.1097/wnp.0000000000000268
- 42.
Kwon MS, Woo SK, Kurland DB, Yoon SH, Palmer AF, Banerjee U, Iqbal S, Ivanova S et al (2015) Methemoglobin is an endogenous toll-like receptor 4 ligand-relevance to subarachnoid hemorrhage. Int J Mol Sci 16(3):5028–5046. https://doi.org/10.3390/ijms16035028
- 43.
Ryazanov AG, Ovchinnikov LP, Spirin AS (1987) Development of structural organization of protein-synthesizing machinery from prokaryotes to eukaryotes. Biosystems 20(3):275–288. https://doi.org/10.1016/0303-2647(87)90035-9
- 44.
Fang H, Wang PF, Zhou Y, Wang YC, Yang QW (2013) Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury. J Neuroinflammation 10:27. https://doi.org/10.1186/1742-2094-10-27
- 45.
Kamaşak T, Dilber B, Yaman S, Durgut BD, Kurt T, Çoban E, Arslan EA, Şahin S et al (2020) HMGB-1, TLR4, IL-1R1, TNF-α, and IL-1β: Novel epilepsy markers? Epileptic Disord 22(2):183–193. https://doi.org/10.1684/epd.2020.1155
- 46.
Iori V, Iyer AM, Ravizza T, Beltrame L, Paracchini L, Marchini S, Cerovic M, Hill C et al (2017) Blockade of the IL-1R1/TLR4 pathway mediates disease-modification therapeutic effects in a model of acquired epilepsy. Neurobiol Dis 99:12–23. https://doi.org/10.1016/j.nbd.2016.12.007
- 47.
Vezzani A, Friedman A, Dingledine RJ (2013) The role of inflammation in epileptogenesis. Neuropharmacology 69:16–24. https://doi.org/10.1016/j.neuropharm.2012.04.004
- 48.
Giansante G, Marte A, Romei A, Prestigio C, Onofri F, Benfenati F, Baldelli P, Valente P (2020) Presynaptic L-type Ca(2+) channels increase glutamate release probability and excitatory strength in the Hippocampus during chronic Neuroinflammation. J Neurosci 40(36):6825–6841. https://doi.org/10.1523/jneurosci.2981-19.2020
- 49.
Wu CT, Wen LL, Wong CS, Tsai SY, Chan SM, Yeh CC, Borel CO, Cherng CH (2011) Temporal changes in glutamate, glutamate transporters, basilar arteries wall thickness, and neuronal variability in an experimental rat model of subarachnoid hemorrhage. Anesth Analg 112(3):666–673. https://doi.org/10.1213/ANE.0b013e318207c51f
- 50.
Nicolo JP, O'Brien TJ, Kwan P (2019) Role of cerebral glutamate in post-stroke epileptogenesis. NeuroImage Clin 24:102069. https://doi.org/10.1016/j.nicl.2019.102069
- 51.
Zhang Z, Liu J, Fan C, Mao L, Xie R, Wang S, Yang M, Yuan H et al (2018) The GluN1/GluN2B NMDA receptor and metabotropic glutamate receptor 1 negative allosteric modulator has enhanced neuroprotection in a rat subarachnoid hemorrhage model. Exp Neurol 301(Pt A):13–25. https://doi.org/10.1016/j.expneurol.2017.12.005
- 52.
Beamer E, Fischer W, Engel T (2017) The ATP-gated P2X7 receptor as a target for the treatment of drug-resistant epilepsy. Front Neurosci 11:21. https://doi.org/10.3389/fnins.2017.00021
- 53.
Song P, Hu J, Liu X, Deng X (2019) Increased expression of the P2X7 receptor in temporal lobe epilepsy: Animal models and clinical evidence. Mol Med Rep 19(6):5433–5439. https://doi.org/10.3892/mmr.2019.10202
- 54.
Jamali-Raeufy N, Barati H, Baluchnejadmojarad T, Roghani M, Goudarzi M (2020) Combination therapy with dipeptidyl peptidase-4 and P2X7 purinoceptor inhibitors gives rise to antiepileptic effects in rats. J Chem Neuroanat 110:101855. https://doi.org/10.1016/j.jchemneu.2020.101855
- 55.
Zhu C, Yang F, Jiang R (2017) The effect of wulongdan on neuroinflammation factors and the expression of P2X7 receptor in the SAH rats. Biomed Res-India 28(12):5388–5392
- 56.
Wheeler D, Knapp E, Bandaru VV, Wang Y, Knorr D, Poirier C, Mattson MP, Geiger JD et al (2009) Tumor necrosis factor-alpha-induced neutral sphingomyelinase-2 modulates synaptic plasticity by controlling the membrane insertion of NMDA receptors. J Neurochem 109(5):1237–1249. https://doi.org/10.1111/j.1471-4159.2009.06038.x
- 57.
Stellwagen D, Beattie EC, Seo JY, Malenka RC (2005) Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 25(12):3219–3228. https://doi.org/10.1523/jneurosci.4486-04.2005
- 58.
Wang S, Cheng Q, Malik S, Yang J (2000) Interleukin-1b inhibits g-aminobutyric acid type a (GABAA) receptor current in cultured hippocampal neurons. J Pharmacol Exp Ther
- 59.
Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, Binaglia M, Corsini E et al (2003) Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 23(25):8692–8700. https://doi.org/10.1523/jneurosci.23-25-08692.2003
- 60.
Balosso S, Maroso M, Sanchez-Alavez M, Ravizza T, Frasca A, Bartfai T, Vezzani A (2008) A novel non-transcriptional pathway mediates the proconvulsive effects of interleukin-1beta. Brain J Neurol 131(Pt 12):3256–3265. https://doi.org/10.1093/brain/awn271
- 61.
Kanellopoulos JM, Delarasse C (2019) Pleiotropic roles of P2X7 in the central nervous system. Front Cell Neurosci 13:401. https://doi.org/10.3389/fncel.2019.00401
- 62.
Wang D, Wang H, Gao H, Zhang H, Zhang H, Wang Q, Sun Z (2020) P2X7 receptor mediates NLRP3 inflammasome activation in depression and diabetes. Cell Biosci 10:28. https://doi.org/10.1186/s13578-020-00388-1
- 63.
Duan Y, Kelley N, He Y (2020) Role of the NLRP3 inflammasome in neurodegenerative diseases and therapeutic implications. Neural Regen Res 15(7):1249–1250. https://doi.org/10.4103/1673-5374.272576
- 64.
Tang XD, Xu R, Reynolds MF, Garcia ML, Heinemann SH, Hoshi T (2003) Haem can bind to and inhibit mammalian calcium-dependent Slo1 BK channels. Nature 425(6957):531–535. https://doi.org/10.1038/nature02003
- 65.
Pétrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J (2007) Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14(9):1583–1589. https://doi.org/10.1038/sj.cdd.4402195
- 66.
Yue J, Wei YJ, Yang XL, Liu SY, Yang H, Zhang CQ (2020) NLRP3 inflammasome and endoplasmic reticulum stress in the epileptogenic zone in temporal lobe epilepsy: Molecular insights into their interdependence. Neuropathol Appl Neurobiol 46(7):770–785. https://doi.org/10.1111/nan.12621
- 67.
Wu C, Zhang G, Chen L, Kim S, Yu J, Hu G, Chen J, Huang Y et al (2019) The role of NLRP3 and IL-1β in refractory epilepsy brain injury. Front Neurol 10:1418. https://doi.org/10.3389/fneur.2019.01418
- 68.
Zhang H, Chu X, Fu T, Lv H, Kong Q, Hao Y (2017) Inhibitory effect of interleukin-1 beta antibody for NLRP3 inflammasome on epilepsy rat model. Int J Clin Exp Pathol 10(2):1847–1853
- 69.
Barros-Barbosa AR, Oliveira Â, Lobo MG, Cordeiro JM, Correia-de-Sá P (2018) Under stressful conditions activation of the ionotropic P2X7 receptor differentially regulates GABA and glutamate release from nerve terminals of the rat cerebral cortex. Neurochem Int 112:81–95. https://doi.org/10.1016/j.neuint.2017.11.005
- 70.
He Y, Zeng MY, Yang D, Motro B, Núñez G (2016) NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530(7590):354–357. https://doi.org/10.1038/nature16959
- 71.
Schmid-Burgk JL, Chauhan D, Schmidt T, Ebert TS, Reinhardt J, Endl E, Hornung V (2016) A genome-wide CRISPR (clustered regularly interspaced short palindromic repeats) screen identifies NEK7 as an essential component of NLRP3 Inflammasome activation. J Biol Chem 291(1):103–109. https://doi.org/10.1074/jbc.C115.700492
- 72.
Di A, Xiong S, Ye Z, Malireddi RKS, Kometani S, Zhong M, Mittal M, Hong Z et al (2018) The TWIK2 potassium Efflux Channel in macrophages mediates NLRP3 Inflammasome-induced inflammation. Immunity 49(1):56–65.e54. https://doi.org/10.1016/j.immuni.2018.04.032
- 73.
Young CC, Stegen M, Bernard R, Müller M, Bischofberger J, Veh RW, Haas CA, Wolfart J (2009) Upregulation of inward rectifier K+ (Kir2) channels in dentate gyrus granule cells in temporal lobe epilepsy. J Physiol 587(Pt 17):4213–4233. https://doi.org/10.1113/jphysiol.2009.170746
- 74.
Li H, Wu W, Sun Q, Liu M, Li W, Zhang XS, Zhou ML, Hang CH (2014) Expression and cell distribution of receptor for advanced glycation end-products in the rat cortex following experimental subarachnoid hemorrhage. Brain Res 1543:315–323. https://doi.org/10.1016/j.brainres.2013.11.023
- 75.
Chaudhry SR, Güresir A, Stoffel-Wagner B, Fimmers R, Kinfe TM, Dietrich D, Lamprecht A, Vatter H et al (2018) Systemic high-mobility group Box-1: A novel predictive biomarker for cerebral vasospasm in aneurysmal subarachnoid hemorrhage. Crit Care Med 46(11):e1023–e1028. https://doi.org/10.1097/ccm.0000000000003319
- 76.
Kaneko Y, Pappas C, Malapira T, Vale F, Tajiri N, Borlongan CV (2017) Extracellular HMGB1 modulates glutamate metabolism associated with Kainic acid-induced epilepsy-like hyperactivity in primary rat neural cells. Cell Physiol Biochem 41(3):947–959. https://doi.org/10.1159/000460513
- 77.
Zhong H, Li X, Zhou S, Jiang P, Liu X, Ouyang M, Nie Y, Chen X et al (2020) Interplay between RAGE and TLR4 regulates HMGB1-induced inflammation by promoting cell surface expression of RAGE and TLR4. J Immunol 205(3):767–775. https://doi.org/10.4049/jimmunol.1900860
- 78.
Mazarati A, Maroso M, Iori V, Vezzani A, Carli M (2011) High-mobility group box-1 impairs memory in mice through both toll-like receptor 4 and receptor for advanced Glycation end products. Exp Neurol 232(2):143–148. https://doi.org/10.1016/j.expneurol.2011.08.012
- 79.
Yang W, Li J, Shang Y, Zhao L, Wang M, Shi J, Li S (2017) HMGB1-TLR4 Axis plays a regulatory role in the pathogenesis of mesial temporal lobe epilepsy in immature rat model and children via the p38MAPK signaling pathway. Neurochem Res 42(4):1179–1190. https://doi.org/10.1007/s11064-016-2153-0
- 80.
Lawton MT, Vates GE (2017) Subarachnoid hemorrhage. N Engl J Med 377(3):257–266. https://doi.org/10.1056/NEJMcp1605827
- 81.
Balosso S, Liu J, Bianchi ME, Vezzani A (2014) Disulfide-containing high mobility group box-1 promotes N-methyl-D-aspartate receptor function and excitotoxicity by activating toll-like receptor 4-dependent signaling in hippocampal neurons. Antioxid Redox Signal 21(12):1726–1740. https://doi.org/10.1089/ars.2013.5349
- 82.
Pauletti A, Terrone G, Shekh-Ahmad T, Salamone A, Ravizza T, Rizzi M, Pastore A, Pascente R et al (2019) Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain J Neurol 142(7):e39. https://doi.org/10.1093/brain/awz130
- 83.
Germanò A, d'Avella D, Imperatore C, Caruso G, Tomasello F (2000) Time-course of blood-brain barrier permeability changes after experimental subarachnoid haemorrhage. Acta Neurochir 142(5):575–580; discussion 580-571. https://doi.org/10.1007/s007010050472
- 84.
Oby ECCF, Department of Neurological Surgery, Cerebrovascular Research, Cleveland, OH, US, Janigro D, ORCID ---. Cleveland Clinic Foundation, Department of Neurological Surgery, Cerebrovascular Research, Cleveland, OH, US, janigrd@ccf.org (2006) The Blood-Brain Barrier and Epilepsy. Epilepsia (No.11):1761–1774
- 85.
Zhu Q, Enkhjargal B, Huang L, Zhang T, Sun C, Xie Z, Wu P, Mo J et al (2018) Aggf1 attenuates neuroinflammation and BBB disruption via PI3K/Akt/NF-κB pathway after subarachnoid hemorrhage in rats. J Neuroinflammation 15(1):178. https://doi.org/10.1186/s12974-018-1211-8
- 86.
Kanamaru H, Suzuki H (2019) Potential therapeutic molecular targets for blood-brain barrier disruption after subarachnoid hemorrhage. Neural Regen Res 14(7):1138–1143. https://doi.org/10.4103/1673-5374.251190
- 87.
Okada T, Kawakita F, Nishikawa H, Nakano F, Liu L, Suzuki H (2019) Selective toll-like receptor 4 antagonists prevent acute blood-brain barrier disruption after subarachnoid hemorrhage in mice. Mol Neurobiol 56(2):976–985. https://doi.org/10.1007/s12035-018-1145-2
- 88.
Sarrafzadeh A, Copin JC, Bengualid DJ, Turck N, Vajkoczy P, Bijlenga P, Schaller K, Gasche Y (2012) Matrix metalloproteinase-9 concentration in the cerebral extracellular fluid of patients during the acute phase of aneurysmal subarachnoid hemorrhage. Neurol Res 34(5):455–461. https://doi.org/10.1179/1743132812y.0000000018
- 89.
Li G, Dong Y, Liu D, Zou Z, Hao G, Gao X, Pan P, Liang G (2020) NEK7 coordinates rapid Neuroinflammation after subarachnoid hemorrhage in mice. Front Neurol 11:551. https://doi.org/10.3389/fneur.2020.00551
- 90.
Ivens S, Kaufer D, Flores LP, Bechmann I, Zumsteg D, Tomkins O, Seiffert E, Heinemann U et al (2007) TGF-beta receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain J Neurol 130(Pt 2):535–547. https://doi.org/10.1093/brain/awl317
- 91.
David Y, Cacheaux LP, Ivens S, Lapilover E, Heinemann U, Kaufer D, Friedman A (2009) Astrocytic dysfunction in epileptogenesis: Consequence of altered potassium and glutamate homeostasis? J Neurosci 29(34):10588–10599. https://doi.org/10.1523/jneurosci.2323-09.2009
- 92.
Florence G, Pereira T, Kurths J (2012) Extracellular potassium dynamics in the hyperexcitable state of the neuronal ictal activity. J Commun Nonlinear Sci Numer Simulat (No.12):4700–4706
- 93.
Herrera-Peco I, Sola RG, Osejo V, Wix-Ramos R, Pastor J (2008) Role of astrocytes activated by albumin in epileptogenesis. Rev Neurol 47(11):582–587
- 94.
Braganza O, Bedner P, Hüttmann K, Von Staden E, Friedman A, Seifert G, Steinhäuser C (2012) Albumin is taken up by hippocampal NG2 cells and astrocytes and decreases gap junction coupling(Article). J Epilepsia (No.11):1898–1906
- 95.
Weissberg I, Wood L, Kamintsky L, Vazquez O, Milikovsky DZ, Alexander A, Oppenheim H, Ardizzone C et al (2015) Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction. Neurobiol Dis 78:115–125. https://doi.org/10.1016/j.nbd.2015.02.029
- 96.
Isaeva E, Hernan A, Isaev D, Holmes GL (2012) Thrombin facilitates seizures through activation of persistent sodium current. Ann Neurol 72(2):192–198. https://doi.org/10.1002/ana.23587
- 97.
Ben Shimon M, Shavit-Stein E, Altman K, Pick CG, Maggio N (2019) Thrombin as key mediator of seizure development following traumatic brain injury. Front Pharmacol 10:1532. https://doi.org/10.3389/fphar.2019.01532
- 98.
Noé FM, Marchi N (2019) Central nervous system lymphatic unit, immunity, and epilepsy: Is there a link? Epilepsia Open 4(1):30–39. https://doi.org/10.1002/epi4.12302
- 99.
Frigerio F, Pasqualini G, Craparotta I, Marchini S, van Vliet EA, Foerch P, Vandenplas C, Leclercq K et al (2018) N-3 Docosapentaenoic acid-derived protectin D1 promotes resolution of neuroinflammation and arrests epileptogenesis. Brain J Neurol 141(11):3130–3143. https://doi.org/10.1093/brain/awy247
- 100.
Zub E, Canet G, Garbelli R, Blaquiere M, Rossini L, Pastori C, Sheikh M, Reutelingsperger C et al (2019) The GR-ANXA1 pathway is a pathological player and a candidate target in epilepsy. FASEB J 33(12):13998–14009. https://doi.org/10.1096/fj.201901596R
- 101.
Panczykowski D, Pease M, Zhao Y, Weiner G, Ares W, Crago E, Jankowitz B, Ducruet AF (2016) Prophylactic Antiepileptics and seizure incidence following subarachnoid hemorrhage: A propensity score-matched analysis. Stroke 47(7):1754–1760. https://doi.org/10.1161/strokeaha.116.013766
- 102.
Yoon SJ, Joo JY, Kim YB, Hong CK, Chung J (2015) Effects of prophylactic antiepileptic drugs on clinical outcomes in patients with a good clinical grade suffering from aneurysmal subarachnoid hemorrhage. J Cerebrovasc Endovasc Neurosurg 17(3):166–172. https://doi.org/10.7461/jcen.2015.17.3.166
- 103.
Mahmoud SH, Buxton J (2017) Seizures and choice of antiepileptic drugs following subarachnoid hemorrhage: A review. Can J Neurol Sci 44(6):643–653. https://doi.org/10.1017/cjn.2017.206
- 104.
Low* WH, Goh QY, Teo MM (2019) Extended Antiepileptic Drug Prophylaxis and Late Onset Seizures in Aneurysmal Subarachnoid Hemorrhage. Open J Mod Neurosurg (No.4):401–409
- 105.
Ying GY, Jing CH, Li JR, Wu C, Yan F, Chen JY, Wang L, Dixon BJ et al (2016) Neuroprotective effects of Valproic acid on blood-brain barrier disruption and apoptosis-related early brain injury in rats subjected to subarachnoid hemorrhage are modulated by heat shock protein 70/matrix Metalloproteinases and heat shock protein 70/AKT pathways. Neurosurgery 79(2):286–295. https://doi.org/10.1227/neu.0000000000001264
- 106.
Chang CZ, Wu SC, Lin CL, Kwan AL (2015) Valproic acid attenuates intercellular adhesion molecule-1 and E-selectin through a chemokine ligand 5 dependent mechanism and subarachnoid hemorrhage induced vasospasm in a rat model. J Inflamm 12:27. https://doi.org/10.1186/s12950-015-0074-3
- 107.
Tso MK, Lass E, Ai J, Loch Macdonald R (2015) Valproic acid treatment after experimental subarachnoid hemorrhage. Acta Neurochir Suppl 120:81–85. https://doi.org/10.1007/978-3-319-04981-6_14
- 108.
Wang H, Gao J, Lassiter TF, McDonagh DL, Sheng H, Warner DS, Lynch JR, Laskowitz DT (2006) Levetiracetam is neuroprotective in murine models of closed head injury and subarachnoid hemorrhage. Neurocrit Care 5(1):71–78. https://doi.org/10.1385/ncc:5:1:71
- 109.
Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM, Rossetti C, Molteni M et al (2010) Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med 16(4):413–419. https://doi.org/10.1038/nm.2127
- 110.
Yew WP, Djukic ND, Jayaseelan JSP, Walker FR, Roos KAA, Chataway TK, Muyderman H, Sims NR (2019) Early treatment with minocycline following stroke in rats improves functional recovery and differentially modifies responses of peri-infarct microglia and astrocytes. J Neuroinflammation 16(1):6. https://doi.org/10.1186/s12974-018-1379-y
- 111.
Li J, Chen S, Fan J, Zhang G, Ren R (2019) Minocycline attenuates experimental subarachnoid hemorrhage in rats. Open Life Sci 14(1):595–602. https://doi.org/10.1515/biol-2019-0067
- 112.
Guo Z-d, Wu H-t, X-c S, X-d Z, Zhang JH (2011) Protection of minocycline on early brain injury after subarachnoid hemorrhage in rats. Acta Neurochir Suppl 110(Pt 1):71–74. https://doi.org/10.1007/978-3-7091-0353-1_13
- 113.
Wang N, Mi X, Gao B, Gu J, Wang W, Zhang Y, Wang X (2015) Minocycline inhibits brain inflammation and attenuates spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neuroscience 287:144–156. https://doi.org/10.1016/j.neuroscience.2014.12.021
- 114.
Nowak M, Strzelczyk A, Reif PS, Schorlemmer K, Bauer S, Norwood BA, Oertel WH, Rosenow F et al (2012) Minocycline as potent anticonvulsant in a patient with astrocytoma and drug resistant epilepsy. Seizure 21(3):227–228. https://doi.org/10.1016/j.seizure.2011.12.009
- 115.
Ieong C, Sun H, Wang Q, Ma J (2018) Glycyrrhizin suppresses the expressions of HMGB1 and ameliorates inflammative effect after acute subarachnoid hemorrhage in rat model. J Clin Neurosci 47:278–284. https://doi.org/10.1016/j.jocn.2017.10.034
- 116.
Zhao J, Wang Y, Xu C, Liu K, Wang Y, Chen L, Wu X, Gao F et al (2017) Therapeutic potential of an anti-high mobility group box-1 monoclonal antibody in epilepsy. Brain Behav Immun 64:308–319. https://doi.org/10.1016/j.bbi.2017.02.002
- 117.
Chen S, Ma Q, Krafft PR, Chen Y, Tang J, Zhang J, Zhang JH (2013) P2X7 receptor antagonism inhibits p38 mitogen-activated protein kinase activation and ameliorates neuronal apoptosis after subarachnoid hemorrhage in rats. Crit Care Med 41(12):e466–e474. https://doi.org/10.1097/CCM.0b013e31829a8246
Acknowledgments
This work was supported by grants from the Natural Science Fund of Guangdong Province (No. 2017A030313597), “Climbing Program” Special Fund of Guangdong Province (No. pdjh2019b0100, No. pdjh2020b0112) and Southern Medical University (No. LX2016N006, No. KJ20161102, No.201912121004S, No.201912121013, No. S202012121088, No. X202012121354, No. 19NJ-YB03).
Author information
Affiliations
Contributions
Jun Wang initiated this project. Jingxue Liang and Jiahong Deng performed the literature research and contributed to the original draft. Other authors participated in the revision of the manuscript.
Corresponding author
Ethics declarations
Conflict of Interest
The authors have nothing to disclose. We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.
Ethics Approval
Not applicable.
Consent to Participate
Not applicable.
Consent for Publication
Not applicable.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Highlights
1. There is a close relationship between epilepsy and inflammatory state after SAH.
2. Microglia and specific receptors are involved in neuroinflammation after SAH.
3. Several anti-inflammatory therapies have been reported to exert neuroprotective effects on epilepsy.
Rights and permissions
About this article
Cite this article
Wang, J., Liang, J., Deng, J. et al. Emerging Role of Microglia-Mediated Neuroinflammation in Epilepsy after Subarachnoid Hemorrhage. Mol Neurobiol (2021). https://doi.org/10.1007/s12035-021-02288-y
Received:
Accepted:
Published:
Keywords
- Microglia
- Epilepsy
- Subarachnoid hemorrhage
- Neuroinflammation