Skip to main content

Advertisement

Log in

Arbutin Improves Functional Recovery and Attenuates Glial Activation in Lysolecethin-Induced Demyelination Model in Rat Optic Chiasm

Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuroinflammation, glial activation, and oxidative injury are the main pathological mechanisms of demyelination in multiple sclerosis (MS). Arbutin, a natural polyphenol compound, possesses antioxidant, anti-inflammatory, and neuroprotective properties whose therapeutic potential has not been studied in the experimental animal models of MS. In the present study, the efficiency of arbutin on lysolecthin (LPC)-induced local demyelination model was investigated. Demyelination was induced by micro-injection of 2 μl LPC (1%) into the rat optic chiasm and the treated group received daily injection of arbutin (50 mg/kg, i.p) during 2 weeks. Visual-evoked potential (VEP) recordings were used to functionally assess the visual pathway. Gene expression analysis was done to evaluate the arbutin effect on the inflammatory, stress oxidative-related mediators, and myelin markers. The myelin-specific staining was performed to assess demyelination and GFAP staining as an astrocyte marker. We found that arbutin significantly reduced P1-latency of VEPs waves and demyelination at 7 and 14 days post-demyelination. Arbutin decreased inflammatory cytokines (IL-1B, IL-17, TNF-α) and iNOS mRNA expression level. In addition, the expression level of anti-inflammatory cytokine (IL-10) and antioxidant mediators (Nrf-2 and HO-1) was enhanced by arbutin treatment. Arbutin increased MBP and Olig2 expression levels in demyelination context. Finally, arbutin attenuated GFAP as an astrocyte marker. Finally, this study demonstrates that arbutin improves functional recovery and myelin repair in the demyelinated optic chiasm through attenuation of inflammation, astrocyte activation, and oxidative stress. These findings might open new promising avenues for treating demyelinating disorders such as multiple sclerosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

GFAP:

Glial fibrillary acidic protein

HO-1:

Heme oxygenase-1

IL-1B:

Interleukin-1beta

IL-17:

Interleukin-17

IL-10:

Interleukin-10

iNOS:

Inducible nitric oxide synthase

LPC:

Lysophosphatidylcholine

MS:

Multiple sclerosis

MBP:

Myelin basic protein

Nrf-2:

Nuclear factor erythroid2-related factor-2

OPCs:

Oligodendrocyte precursor cells

ROS:

Reactive oxygen species

TNF-α:

Tumor necrosis factor alpha

VEP:

Visual-evoked potential

References

  1. Imitola J, Chitnis T, Khoury SJ (2005) Cytokines in multiple sclerosis: from bench to bedside. Pharmacol Ther 106(2):163–177. https://doi.org/10.1016/j.pharmthera.2004.11.007

    Article  CAS  PubMed  Google Scholar 

  2. Hauser SL, Oksenberg JR (2006) The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron 52(1):61–76. https://doi.org/10.1016/j.neuron.2006.09.011

    Article  CAS  PubMed  Google Scholar 

  3. Beck R, Schatz N, Savino J (1983) Involvement of the optic chiasm, optic tract and geniculo-calcarine visual system in multiple sclerosis. Bull Soc Belge Ophtalmol 208:159

    PubMed  Google Scholar 

  4. Feinstein A (2005) The clinical neuropsychiatry of multiple sclerosis. CNS Spectr 10(5):362

    Article  PubMed  Google Scholar 

  5. Guazzo EP (2005) A technique for producing demyelination of the rat optic nerves. J Clin Neurosci 12(1):54–58. https://doi.org/10.1016/j.jocn.2004.08.002

    Article  CAS  PubMed  Google Scholar 

  6. Shivane AG, Chakrabarty A (2007) Multiple sclerosis and demyelination. Curr Diagn Pathol 13(3):193–202

    Article  Google Scholar 

  7. Kawanokuchi J, Mizuno T, Takeuchi H, Kato H, Wang J, Mitsuma N, Suzumura A (2006) Production of interferon-gamma by microglia. Mult Scler 12(5):558–564. https://doi.org/10.1177/1352458506070763

    Article  CAS  PubMed  Google Scholar 

  8. Gilgun-Sherki Y, Melamed E, Offen D (2004) The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol 251(3):261–268. https://doi.org/10.1007/s00415-004-0348-9

    Article  CAS  PubMed  Google Scholar 

  9. Farez MF, Correale J (2016) Sphingosine 1-phosphate signaling in astrocytes: implications for progressive multiple sclerosis. J Neurol Sci 361:60–65. https://doi.org/10.1016/j.jns.2015.12.022

    Article  CAS  PubMed  Google Scholar 

  10. Hagemeier K, Bruck W, Kuhlmann T (2012) Multiple sclerosis—remyelination failure as a cause of disease progression. Histol Histopathol 27(3):277–287. https://doi.org/10.14670/HH-27.277

    Article  CAS  PubMed  Google Scholar 

  11. Butts BD, Houde C, Mehmet H (2008) Maturation-dependent sensitivity of oligodendrocyte lineage cells to apoptosis: implications for normal development and disease. Cell Death Differ 15(7):1178–1186. https://doi.org/10.1038/cdd.2008.70

    Article  CAS  PubMed  Google Scholar 

  12. Wang C, Cai Z, Wang W, Wei M, Kou D, Li T, Yang Z, Guo H et al (2019) Piperine attenuates cognitive impairment in an experimental mouse model of sporadic Alzheimer’s disease. J Nutr Biochem 70:147–155. https://doi.org/10.1016/j.jnutbio.2019.05.009

    Article  CAS  PubMed  Google Scholar 

  13. Ahmadian SR, Ghasemi-Kasman M, Pouramir M, Sadeghi F (2019) Arbutin attenuates cognitive impairment and inflammatory response in pentylenetetrazol-induced kindling model of epilepsy. Neuropharmacology 146:117–127. https://doi.org/10.1016/j.neuropharm.2018.11.038

    Article  CAS  PubMed  Google Scholar 

  14. Baradaran S, Moghaddam AH, Ghasemi-Kasman M (2018) Hesperetin reduces myelin damage and ameliorates glial activation in lysolecithin-induced focal demyelination model of rat optic chiasm. Life Sci 207:471–479

    Article  CAS  PubMed  Google Scholar 

  15. Mohajeri M, Sadeghizadeh M, Najafi F, Javan M (2015) Polymerized nano-curcumin attenuates neurological symptoms in EAE model of multiple sclerosis through down regulation of inflammatory and oxidative processes and enhancing neuroprotection and myelin repair. Neuropharmacology 99:156–167. https://doi.org/10.1016/j.neuropharm.2015.07.013

    Article  CAS  PubMed  Google Scholar 

  16. Shahaboddin ME, Pouramir M, Moghadamnia AA, Parsian H, Lakzaei M, Mir H (2011) Pyrus biossieriana Buhse leaf extract: an antioxidant, antihyperglycaemic and antihyperlipidemic agent. Food Chem 126(4):1730–1733. https://doi.org/10.1016/j.foodchem.2010.12.069

    Article  CAS  PubMed  Google Scholar 

  17. Yousefi F, Mahjoub S, Pouramir M, Khadir F (2013) Hypoglycemic activity of Pyrus biossieriana Buhse leaf extract and arbutin: inhibitory effects on alpha amylase and alpha glucosidase. Caspian J Intern Med 4(4):763–767

    PubMed  PubMed Central  Google Scholar 

  18. Li H, Jeong YM, Kim SY, Kim MK, Kim DS (2011) Arbutin inhibits TCCSUP human bladder cancer cell proliferation via up-regulation of p21. Pharmazie 66(4):306–309

    CAS  PubMed  Google Scholar 

  19. Nawarak J, Huang-Liu R, Kao SH, Liao HH, Sinchaikul S, Chen ST, Cheng SL (2009) Proteomics analysis of A375 human malignant melanoma cells in response to arbutin treatment. Biochim Biophys Acta 1794(2):159–167. https://doi.org/10.1016/j.bbapap.2008.09.023

    Article  CAS  PubMed  Google Scholar 

  20. Lee HJ, Kim KW (2012) Anti-inflammatory effects of arbutin in lipopolysaccharide-stimulated BV2 microglial cells. Inflamm Res 61(8):817–825. https://doi.org/10.1007/s00011-012-0474-2

    Article  CAS  PubMed  Google Scholar 

  21. Pecivova J, Nosal R, Svitekova K, Macickova T (2014) Arbutin and decrease of potentially toxic substances generated in human blood neutrophils. Interdiscip Toxicol 7(4):195–200. https://doi.org/10.2478/intox-2014-0028

    Article  CAS  PubMed  Google Scholar 

  22. Ye J, Guan M, Lu Y, Zhang D, Li C, Zhou C (2019) Arbutin attenuates LPS-induced lung injury via Sirt1/ Nrf2/ NF-kappaBp65 pathway. Pulm Pharmacol Ther 54:53–59. https://doi.org/10.1016/j.pupt.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  23. Sun KH, Tang SJ, Chen CY, Lee TP, Feng CK, Yu CL, Sun GH (2005) Monoclonal ribosomal P autoantibody inhibits the expression and release of IL-12, TNF-alpha and iNOS in activated RAW macrophage cell line. J Autoimmun 24(2):135–143. https://doi.org/10.1016/j.jaut.2005.01.002

    Article  CAS  PubMed  Google Scholar 

  24. Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 73(17):3221–3247. https://doi.org/10.1007/s00018-016-2223-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang T, Chen C, Yang L, Zeng Z, Zeng M, Jiang W, Liu L, Zhao M (2019) Role of Nrf2/HO-1 signal axis in the mechanisms for oxidative stress-relevant diseases. Zhong Nan Da Xue Xue Bao Yi Xue Ban 44(1):74–80. https://doi.org/10.11817/j.issn.1672-7347.2019.01.012

    Article  PubMed  Google Scholar 

  26. Cheng HT, Yen CJ, Chang CC, Huang KT, Chen KH, Zhang RY, Lee PY, Miaw SC et al (2015) Ferritin heavy chain mediates the protective effect of heme oxygenase-1 against oxidative stress. Biochim Biophys Acta 1850(12):2506–2517. https://doi.org/10.1016/j.bbagen.2015.09.018

    Article  CAS  PubMed  Google Scholar 

  27. Dadgar M, Pouramir M, Dastan Z, Ghasemi-Kasman M, Ashrafpour M, Moghadamnia AA, Khafri S, Pourghasem M (2018) Arbutin attenuates behavioral impairment and oxidative stress in an animal model of Parkinson’s disease. Avicenna J Phytomed 8(6):533–542

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Khanal T, Kim HG, Hwang YP, Kong MJ, Kang MJ, Yeo HK, Kim DH, Jeong TC et al (2011) Role of metabolism by the human intestinal microflora in arbutin-induced cytotoxicity in HepG2 cell cultures. Biochem Biophys Res Commun 413(2):318–324. https://doi.org/10.1016/j.bbrc.2011.08.094

    Article  CAS  PubMed  Google Scholar 

  29. Hall SM (1972) The effect of injections of lysophosphatidyl choline into white matter of the adult mouse spinal cord. J Cell Sci 10(2):535–546

    CAS  PubMed  Google Scholar 

  30. Mozafari S, Javan M, Sherafat MA, Mirnajafi-Zadeh J, Heibatollahi M, Pour-Beiranvand S, Tiraihi T, Ahmadiani A (2011) Analysis of structural and molecular events associated with adult rat optic chiasm and nerves demyelination and remyelination: possible role for 3rd ventricle proliferating cells. NeuroMolecular Med 13(2):138–150. https://doi.org/10.1007/s12017-011-8143-0

    Article  CAS  PubMed  Google Scholar 

  31. Pourabdolhossein F, Mozafari S, Morvan-Dubois G, Mirnajafi-Zadeh J, Lopez-Juarez A, Pierre-Simons J, Demeneix BA, Javan M (2014) Nogo receptor inhibition enhances functional recovery following lysolecithin-induced demyelination in mouse optic chiasm. PLoS One 9(9):e106378. https://doi.org/10.1371/journal.pone.0106378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sherafat MA, Javan M, Mozafari S, Mirnajafi-Zadeh J, Motamedi F (2011) Castration attenuates myelin repair following lysolecithin induced demyelination in rat optic chiasm: an evaluation using visual evoked potential, marker genes expression and myelin staining. Neurochem Res 36(10):1887–1895. https://doi.org/10.1007/s11064-011-0510-6

    Article  CAS  PubMed  Google Scholar 

  33. Ishikawa T, Fujiwara A, Takechi K, Ago J, Matsumoto N, Rahman MA, Kamei C (2008) Changes of visual evoked potential induced by lateral geniculate nucleus kindling in rats. Epilepsy Res 79(2–3):146–150. https://doi.org/10.1016/j.eplepsyres.2008.01.001

    Article  PubMed  Google Scholar 

  34. Kuroda K, Fujiwara A, Takeda Y, Kamei C (2009) Effects of narcotics, including morphine, on visual evoked potential in rats. Eur J Pharmacol 602(2–3):294–297. https://doi.org/10.1016/j.ejphar.2008.11.048

    Article  CAS  PubMed  Google Scholar 

  35. Plemel JR, Michaels NJ, Weishaupt N, Caprariello AV, Keough MB, Rogers JA, Yukseloglu A, Lim J et al (2018) Mechanisms of lysophosphatidylcholine-induced demyelination: a primary lipid disrupting myelinopathy. Glia 66(2):327–347. https://doi.org/10.1002/glia.23245

    Article  PubMed  Google Scholar 

  36. Schilling T, Eder C (2010) Importance of lipid rafts for lysophosphatidylcholine-induced caspase-1 activation and reactive oxygen species generation. Cell Immunol 265(2):87–90. https://doi.org/10.1016/j.cellimm.2010.08.003

    Article  CAS  PubMed  Google Scholar 

  37. Paxinos G, Watson C (2007) The rat brain in stereotaxic coorinates.456. doi:Hardcover ISBN: 9780125476126

  38. Pourabdolhossein F, Gil-Perotin S, Garcia-Belda P, Dauphin A, Mozafari S, Tepavcevic V, Manuel Garcia Verdugo J, Baron-Van Evercooren A (2017) Inflammatory demyelination induces ependymal modifications concomitant to activation of adult (SVZ) stem cell proliferation. Glia 65(5):756–772. https://doi.org/10.1002/glia.23124

    Article  PubMed  Google Scholar 

  39. Mandler M, Valera E, Rockenstein E, Mante M, Weninger H, Patrick C, Adame A, Schmidhuber S et al (2015) Active immunization against alpha-synuclein ameliorates the degenerative pathology and prevents demyelination in a model of multiple system atrophy. Mol Neurodegener 10:10. https://doi.org/10.1186/s13024-015-0008-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mozafari S, Sherafat MA, Javan M, Mirnajafi-Zadeh J, Tiraihi T (2010) Visual evoked potentials and MBP gene expression imply endogenous myelin repair in adult rat optic nerve and chiasm following local lysolecithin induced demyelination. Brain Res 1351:50–56. https://doi.org/10.1016/j.brainres.2010.07.026

    Article  CAS  PubMed  Google Scholar 

  41. You Y, Klistorner A, Thie J, Graham SL (2011) Latency delay of visual evoked potential is a real measurement of demyelination in a rat model of optic neuritis. Invest Ophthalmol Vis Sci 52(9):6911–6918. https://doi.org/10.1167/iovs.11-7434

    Article  PubMed  Google Scholar 

  42. Jordan CA, Friedrich VL Jr, Godfraind C, Cardellechio CB, Holmes KV, Dubois-Dalcq M (1989) Expression of viral and myelin gene transcripts in a murine CNS demyelinating disease caused by a coronavirus. Glia 2(5):318–329. https://doi.org/10.1002/glia.440020505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lopez Juarez A, He D, Richard Lu Q (2016) Oligodendrocyte progenitor programming and reprogramming: toward myelin regeneration. Brain Res 1638(Pt B):209–220. https://doi.org/10.1016/j.brainres.2015.10.051

    Article  CAS  PubMed  Google Scholar 

  44. Takebayashi J, Ishii R, Chen J, Matsumoto T, Ishimi Y, Tai A (2010) Reassessment of antioxidant activity of arbutin: multifaceted evaluation using five antioxidant assay systems. Free Radic Res 44(4):473–478. https://doi.org/10.3109/10715761003610760

    Article  CAS  PubMed  Google Scholar 

  45. Pott F, Gingele S, Clarner T, Dang J, Baumgartner W, Beyer C, Kipp M (2009) Cuprizone effect on myelination, astrogliosis and microglia attraction in the mouse basal ganglia. Brain Res 1305:137–149. https://doi.org/10.1016/j.brainres.2009.09.084

    Article  CAS  PubMed  Google Scholar 

  46. Klistorner A, Graham SL, Martins A, Grigg JR, Arvind H, Kumar RS, James AC, Billson FA (2007) Multifocal blue-on-yellow visual evoked potentials in early glaucoma. Ophthalmology 114(9):1613–1621. https://doi.org/10.1016/j.ophtha.2006.11.037

    Article  PubMed  Google Scholar 

  47. Mousavi Majd A, Ebrahim Tabar F, Afghani A, Ashrafpour S, Dehghan S, Gol M, Ashrafpour M, Pourabdolhossein F (2018) Inhibition of GABA A receptor improved spatial memory impairment in the local model of demyelination in rat hippocampus. Behav Brain Res 336:111–121. https://doi.org/10.1016/j.bbr.2017.08.046

    Article  CAS  PubMed  Google Scholar 

  48. Freeman L, Guo H, David CN, Brickey WJ, Jha S, Ting JP (2017) NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. J Exp Med 214(5):1351–1370. https://doi.org/10.1084/jem.20150237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Naeimi R, Safarpour F, Hashemian M, Tashakorian H, Ahmadian SR, Ashrafpour M, Ghasemi-Kasman M (2018) Curcumin-loaded nanoparticles ameliorate glial activation and improve myelin repair in lyolecithin-induced focal demyelination model of rat corpus callosum. Neurosci Lett 674:1–10. https://doi.org/10.1016/j.neulet.2018.03.018

    Article  CAS  PubMed  Google Scholar 

  50. Naeimi R, Baradaran S, Ashrafpour M, Moghadamnia AA, Ghasemi-Kasman M (2018) Querectin improves myelin repair of optic chiasm in lyolecithin-induced focal demyelination model. Biomed Pharmacother 101:485–493. https://doi.org/10.1016/j.biopha.2018.02.125

    Article  CAS  PubMed  Google Scholar 

  51. Lassmann H, van Horssen J (2016) Oxidative stress and its impact on neurons and glia in multiple sclerosis lesions. Biochim Biophys Acta 1862(3):506–510. https://doi.org/10.1016/j.bbadis.2015.09.018

    Article  CAS  PubMed  Google Scholar 

  52. Ousman SS, David S (2000) Lysophosphatidylcholine induces rapid recruitment and activation of macrophages in the adult mouse spinal cord. Glia 30(1):92–104

    Article  CAS  PubMed  Google Scholar 

  53. Tarbali S, Khezri S (2016) Vitamin D3 attenuates oxidative stress and cognitive deficits in a model of toxic demyelination. Iran J Basic Med Sci 19(1):80–88

    PubMed  PubMed Central  Google Scholar 

  54. Luo Q, Yan X, Bobrovskaya L, Ji M, Yuan H, Lou H, Fan P (2017) Anti-neuroinflammatory effects of grossamide from hemp seed via suppression of TLR-4-mediated NF-kappaB signaling pathways in lipopolysaccharide-stimulated BV2 microglia cells. Mol Cell Biochem 428(1–2):129–137. https://doi.org/10.1007/s11010-016-2923-7

    Article  CAS  PubMed  Google Scholar 

  55. Baowen Q, Yulin Z, Xin W, Wenjing X, Hao Z, Zhizhi C, Xingmei D, Xia Z et al (2010) A further investigation concerning correlation between anti-fibrotic effect of liposomal quercetin and inflammatory cytokines in pulmonary fibrosis. Eur J Pharmacol 642(1–3):134–139. https://doi.org/10.1016/j.ejphar.2010.05.019

    Article  CAS  PubMed  Google Scholar 

  56. Tucsek Z, Radnai B, Racz B, Debreceni B, Priber JK, Dolowschiak T, Palkovics T, Gallyas F Jr et al (2011) Suppressing LPS-induced early signal transduction in macrophages by a polyphenol degradation product: a critical role of MKP-1. J Leukoc Biol 89(1):105–111. https://doi.org/10.1189/jlb.0610355

    Article  CAS  PubMed  Google Scholar 

  57. Couper KN, Blount DG, Riley EM (2008) IL-10: the master regulator of immunity to infection. J Immunol 180(9):5771–5777. https://doi.org/10.4049/jimmunol.180.9.5771

    Article  CAS  PubMed  Google Scholar 

  58. Saraiva M, O’Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10(3):170–181. https://doi.org/10.1038/nri2711

    Article  CAS  PubMed  Google Scholar 

  59. Salmaggi A, Dufour A, Eoli M, Corsini E, La Mantia L, Massa G, Nespolo A, Milanese C (1996) Low serum interleukin-10 levels in multiple sclerosis: further evidence for decreased systemic immunosuppression? J Neurol 243(1):13–17. https://doi.org/10.1007/bf00878525

    Article  CAS  PubMed  Google Scholar 

  60. Correale J, Gilmore W, McMillan M, Li S, McCarthy K, Le T, Weiner LP (1995) Patterns of cytokine secretion by autoreactive proteolipid protein-specific T cell clones during the course of multiple sclerosis. J Immunol 154(6):2959–2968

    CAS  PubMed  Google Scholar 

  61. Daneshdoust D, Khalili-Fomeshi M, Ghasemi-Kasman M, Ghorbanian D, Hashemian M, Gholami M, Moghadamnia A, Shojaei A (2017) Pregabalin enhances myelin repair and attenuates glial activation in lysolecithin-induced demyelination model of rat optic chiasm. Neuroscience 344:148–156. https://doi.org/10.1016/j.neuroscience.2016.12.037

    Article  CAS  PubMed  Google Scholar 

  62. Khezri S, Dasht Bozorgi N, Rahmani F (2016) The effect of caffeine on the myelin repair following experimental demyelination induction in the adult rat hippocampus. J Cell Mol Res 8(1):15–24

    Google Scholar 

  63. Tanaka Y, Yokoo H, Komori T, Makita Y, Ishizawa T, Hirose T, Ebato M, Shibahara J et al (2005) A distinct pattern of Olig2-positive cellular distribution in papillary glioneuronal tumors: a manifestation of the oligodendroglial phenotype? Acta Neuropathol 110(1):39–47. https://doi.org/10.1007/s00401-005-1018-4

    Article  CAS  PubMed  Google Scholar 

  64. Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9(11):839–855. https://doi.org/10.1038/nrn2480

    Article  CAS  PubMed  Google Scholar 

  65. Levine JM, Reynolds R (1999) Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Exp Neurol 160(2):333–347. https://doi.org/10.1006/exnr.1999.7224

    Article  CAS  PubMed  Google Scholar 

  66. Picard-Riera N, Decker L, Delarasse C, Goude K, Nait-Oumesmar B, Liblau R, Pham-Dinh D, Baron-Van Evercooren A (2002) Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc Natl Acad Sci U S A 99(20):13211–13216. https://doi.org/10.1073/pnas.192314199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chari DM, Blakemore WF (2002) Efficient recolonisation of progenitor-depleted areas of the CNS by adult oligodendrocyte progenitor cells. Glia 37(4):307–313

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Deputy of Research and Technology (No. 9603818), Babol University of Medical Sciences, Babol, Iran and was performed as a part of a Medical doctor thesis in the Physiology Department at Babol University of Medical Sciences. The authors would like to appreciate the kind assistance and support of Dr. Mohammad Javan during the study. The authors are thankful to Mr. Saeed Maniati from Babol University of Medical Sciences for designing the graphical abstract.

Author information

Authors and Affiliations

Authors

Contributions

Study design was done by Fereshteh Pourabdolhossein, Mahdi Pouramir, and Manuchehr Ashrafpour. Data collection was done by Forough Ebrahim-Tabar and Atena Nazari. Data analysis was done by Forough Ebrahim-Tabar, Atena Nazari and Fereshteh Pourabdolhossein. Manuscript preparation was done by Forough Ebrahim-Tabar and Fereshteh Pourabdolhossein. Final approval of the manuscript before submission was by Forough Ebrahim-Tabar, Fereshteh Pourabdolhossein, Atena Nazari, Mahdi Pouramir, and Manuchehr Ashrafpour.

Corresponding author

Correspondence to Fereshteh Pourabdolhossein.

Ethics declarations

All experimental procedures were conducted based on the principles and procedures described in the National Institutes of Health guidelines for the care and use of laboratory animals and approved by the ethical committee of the Babol University of Medical Sciences (IR.MUBABOL.HRI.REC.1396.75).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Arbutin improves functional recovery and myelin repair in demyelination model of the rat optic chiasm.

• Arbutin enhances OPC population and MBP expression in the rat demyelinated optic chiasm.

• Arbutin reduces the levels of inflammatory mediators and astrocytes activation in demyelination context.

• Arbutin increases the level of IL-10 and antioxidant gene markers in a LPC-induced demyelination model

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahim-Tabar, F., Nazari, A., Pouramir, M. et al. Arbutin Improves Functional Recovery and Attenuates Glial Activation in Lysolecethin-Induced Demyelination Model in Rat Optic Chiasm. Mol Neurobiol 57, 3228–3242 (2020). https://doi.org/10.1007/s12035-020-01962-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01962-x

Keywords

Navigation