Skip to main content

Advertisement

Log in

Hepcidin Mediates Transcriptional Changes in Ferroportin mRNA in Differentiated Neuronal-Like PC12 Cells Subjected to Iron Challenge

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 20 August 2018

This article has been updated

Abstract

Ferroportin is the only known iron exporter, and its regulation seems to be controlled at both transcriptional, post-transcriptional, and post-translational levels. The objective of the current work was to investigate how cellular iron status affects the expression of the ferroportin gene Fpn under the influence of hepcidin, known to post-translational lower the available ferroportin protein. Nerve growth factor-beta (NGF-β)-differentiated PC12 cells, used as a model of neuronal cells, were evaluated in terms of their viability and expression of ferroportin after inducing cellular iron overload with ferric ammonium citrate (FAC) or hepcidin, iron deficiency with deferoxamine (DFO), or hepcidin in combination with FAC or DFO. Ferritin mRNA was significantly upregulated following treatment with 20 mM FAC. The viability of the differentiated PC12 cells was significantly reduced after treatment with 30 mM FAC or 1.0 μM hepcidin, but when combining FAC and hepcidin treatment, the cells remained unaffected. The expression of Fpn was concurrently upregulated after treatment with FAC in combination with hepcidin. Fifty millimolar DFO also increased Fpn. Together, these data point towards a transcriptional induction of Fpn in response to changes in cellular iron levels. Epigenetic regulation of Fpn may also occur as changes in genes associated with epigenetic regulation of Fpn were demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 20 August 2018

    The original version of this article unfortunately contained mistakes on Figs. 1, 2, and 7 as some of the data were not visible. With this, the correct images are hereby published.

Abbreviations

ARE:

Antioxidant response element

BSA:

Bovine serum albumin

Cy5:

Cyanine-5

DAPI:

4′,6-Diamidino-2-phenylindole dihydrochloride

DFO:

Deferoxamine

Dmt1:

Divalent metal transporter 1

DIV:

Days in vitro

FAC:

Ferric ammonium iron (III) citrate

FCS:

Fetal calf serum

Fe2+ :

Ferrous iron

Fe3+ :

Ferric iron

Fpn :

Ferroportin gene expression

Ftl:

Ferritin light chain

Fth:

Ferritin heavy chain

Hdac1:

Histone deacetylase 1

IRE:

Iron-responsive element

IRP:

Iron regulatory protein

NGF-β:

Nerve growth factor beta1

PBS:

Phosphate-buffered saline

PFA:

Paraformaldehyde

Phf8:

PHD finger protein 8

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SEM:

Standard error of the mean

Tet1:

Ten-eleven translocation methylcytosine dioxygenase 1

Tubb4b:

Class IV β-tubulin

UTR:

Untranslated region

References

  1. Belaidi AA, Bush AI (2016) Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J Neurochem 139:179–197. https://doi.org/10.1111/jnc.13425

    Article  CAS  PubMed  Google Scholar 

  2. Moos T, Rosengren Nielsen T, Skjørringe T, Morgan EH (2007) Iron trafficking inside the brain. J Neurochem 103:1730–1740. https://doi.org/10.1111/j.1471-4159.2007.04976.x

    Article  CAS  PubMed  Google Scholar 

  3. Andersen HH, Johnsen KB, Moos T (2014) Iron deposits in the chronically inflamed central nervous system and contributes to neurodegeneration. Cell Mol Life Sci 71:1607–1622. https://doi.org/10.1007/s00018-013-1509-8

    Article  CAS  PubMed  Google Scholar 

  4. Crichton RR, Dexter DT, Ward RJ (2011) Brain iron metabolism and its perturbation in neurological diseases. J Neural Transm 118:301–314. https://doi.org/10.1007/s00702-010-0470-z

    Article  CAS  PubMed  Google Scholar 

  5. Ward RJ, Zucca FA, Duyn JH et al (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13:1045–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mills E, Dong X-P, Wang F, Xu H (2010) Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders. Future Med Chem 2:51–64. https://doi.org/10.1021/ac901991x

    Article  CAS  PubMed  Google Scholar 

  7. Ward DM, Kaplan J (2012) Ferroportin-mediated iron transport: expression and regulation. Biochim Biophys Acta - Mol Cell Res 1823:1426–1433. https://doi.org/10.1016/j.bbamcr.2012.03.004

    Article  CAS  Google Scholar 

  8. Le Gac G, Ka C, Joubrel R et al (2013) Structure-function analysis of the human ferroportin iron exporter (SLC40A1): effect of hemochromatosis type 4 disease mutations and identification of critical residues. Hum Mutat 34:1371–1380. https://doi.org/10.1002/humu.22369

    Article  CAS  PubMed  Google Scholar 

  9. Bonaccorsi di Patti MC, Polticelli F, Cece G et al (2014) A structural model of human ferroportin and of its iron binding site. FEBS J 281:2851–2860. https://doi.org/10.1111/febs.12825

    Article  CAS  PubMed  Google Scholar 

  10. Rochette L, Gudjoncik A, Guenancia C et al (2015) The iron-regulatory hormone hepcidin: a possible therapeutic target? Pharmacol Ther 146:35–52. https://doi.org/10.1016/j.pharmthera.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  11. Guo W, Zhang S, Chen Y et al (2015) An important role of the hepcidin–ferroportin signaling in affecting tumor growth and metastasis. Acta Biochim Biophys Sin Shanghai 47:703–715. https://doi.org/10.1093/abbs/gmv063

    Article  CAS  PubMed  Google Scholar 

  12. Drakesmith H, Nemeth E, Ganz T (2015) Ironing out ferroportin. Cell Metab 22:777–787. https://doi.org/10.1016/j.cmet.2015.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oates PS (2007) The role of hepcidin and ferroportin in iron absorption. Histol Histopathol 22:791–804

    CAS  PubMed  Google Scholar 

  14. Wallace DF (2016) The regulation of iron absorption and homeostasis. Clin Biochem Rev 37:51–62

  15. Marro S, Chiabrando D, Messana E et al (2010) Heme controls ferroportin1 (FPN1) transcription involving Bach1, Nrf2 and a MARE/ARE sequence motif at position -7007 of the FPN1 promoter. Haematologica 95:1261–1268. https://doi.org/10.3324/haematol.2009.020123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chung J, Haile DJ, Wessling-Resnick M (2004) Copper-induced ferroportin-1 expression in J774 macrophages is associated with increased iron efflux. Proc Natl Acad Sci U S A 101:2700–2705. https://doi.org/10.1073/pnas.0306622101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Silva B, Faustino P (2015) An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta 1852:1347–1359. https://doi.org/10.1016/j.bbadis.2015.03.011

    Article  CAS  PubMed  Google Scholar 

  18. Gulec S, Anderson GJ, Collins JF (2014) Mechanistic and regulatory aspects of intestinal iron absorption. AJP Gastrointest Liver Physiol 307:G397–G409. https://doi.org/10.1152/ajpgi.00348.2013

    Article  CAS  Google Scholar 

  19. Burkhart A, Skjørringe T, Johnsen KB, Moos T (2015) Divalent metal transporter 1 (DMT1) in the brain: implications for a role in iron transport at the blood-brain barrier, and neuronal and glial pathology. Front Mol Neurosci 8:19. https://doi.org/10.3389/fnmol.2015.00019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen Y, Zhang S, Wang X et al (2015) Disordered signaling governing ferroportin transcription favors breast cancer growth. Cell Signal 27:168–176. https://doi.org/10.1016/j.cellsig.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  21. Szyf M (2015) Prospects for the development of epigenetic drugs for CNS conditions. Nat Rev Drug Discov 14:461–474. https://doi.org/10.1038/nrd4580

    Article  CAS  PubMed  Google Scholar 

  22. Yao B, Christian KM, He C et al (2016) Epigenetic mechanisms in neurogenesis. Nat Rev Neurosci 17:537–549. https://doi.org/10.1038/nrn.2016.70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Arrowsmith CH, Bountra C, Fish PV et al (2012) Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 11:384–400. https://doi.org/10.1038/nrd3674

    Article  CAS  PubMed  Google Scholar 

  24. Qureshi IA, Mehler MF (2015) Epigenetics and therapeutic targets mediating neuroprotection. Brain Res 1628:265–272. https://doi.org/10.1016/j.brainres.2015.07.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Karuppagounder SS, Kumar A, Shao DS et al (2015) Metabolism and epigenetics in the nervous system: creating cellular fitness and resistance to neuronal death in neurological conditions via modulation of oxygen-, iron-, and 2-oxoglutarate-dependent dioxygenases. Brain Res 1628:1–15. https://doi.org/10.1016/j.brainres.2015.07.030

    Article  CAS  Google Scholar 

  26. Guo JU, Su Y, Zhong C et al (2011) Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145:423–434. https://doi.org/10.1016/j.cell.2011.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Das KP, Freudenrich TM, Mundy WR (2004) Assessment of PC12 cell differentiation and neurite growth: a comparison of morphological and neurochemical measures. Neurotoxicol Teratol 26:397–406. https://doi.org/10.1016/j.ntt.2004.02.006

    Article  CAS  PubMed  Google Scholar 

  28. Yang H, Cabral F (2007) Heightened sensitivity to paclitaxel in class IVa β-tubulin-transfected cells is lost as expression increases. J Biol Chem 282:27058–27066. https://doi.org/10.1074/jbc.M704101200

    Article  CAS  PubMed  Google Scholar 

  29. Wu C, Zhao W, Yu J et al (2018) Induction of ferroptosis and mitochondrial dysfunction by oxidative stress in PC12 cells. Sci Rep 8:1–11. https://doi.org/10.1038/s41598-017-18935-1

    Article  CAS  Google Scholar 

  30. Hentze MW, Muckenthaler MU, Galy B, Camaschella C (2010) Two to tango: regulation of mammalian iron metabolism. Cell 142:24–38. https://doi.org/10.1016/j.cell.2010.06.028

    Article  CAS  PubMed  Google Scholar 

  31. Zhao GY, Di DH, Wang B et al (2014) Iron regulates the expression of ferroportin 1 in the cultured hFOB 1.19 osteoblast cell line. Exp Ther Med 8:826–830. https://doi.org/10.3892/etm.2014.1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen Y, Qian ZM, Du J et al (2005) Iron loading inhibits ferroportin1 expression in PC12 cells. Neurochem Int 47:507–513. https://doi.org/10.1016/j.neuint.2005.06.004

    Article  CAS  PubMed  Google Scholar 

  33. Lane DJR, Richardson DR (2014) Free radical biology and medicine the active role of vitamin C in mammalian iron metabolism: much more than just enhanced iron absorption! Free Radic Biol Med 75:69–83. https://doi.org/10.1016/j.freeradbiomed.2014.07.007

    Article  CAS  PubMed  Google Scholar 

  34. Muckenthaler MU, Rivella S, Hentze MW, Galy B (2017) A red carpet for iron metabolism. Cell 3:1–18. https://doi.org/10.1016/j.cell.2016.12.034

    Article  CAS  Google Scholar 

  35. Thomsen MS, Andersen MV, Christoffersen PR et al (2015) Neurodegeneration with inflammation is accompanied by accumulation of iron and ferritin in microglia and neurons. Neurobiol Dis 81:108–118. https://doi.org/10.1016/j.nbd.2015.03.013

    Article  CAS  PubMed  Google Scholar 

  36. Enculescu M, Metzendorf C, Sparla R et al (2017) Modelling systemic Iron regulation during dietary iron overload and acute inflammation: role of hepcidin-independent mechanisms. PLoS Comput Biol 13:e1005322. https://doi.org/10.1371/journal.pcbi.1005322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sebastiani G, Wilkinson N, Pantopoulos K (2016) Pharmacological targeting of the hepcidin/ferroportin axis. Front Pharmacol 7:1–11. https://doi.org/10.3389/fphar.2016.00160

    Article  CAS  Google Scholar 

  38. Brasselagnel C, Karim Z, Letteron P et al (2011) Intestinal DMT1 cotransporter is down-regulated by hepcidin via proteasome internalization and degradation. Gastroenterology 140:1261–1271. https://doi.org/10.1053/j.gastro.2010.12.037

    Article  CAS  Google Scholar 

  39. De Domenico I, Zhang TY, Koening CL et al (2010) Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice. J Clin Invest 120:2395–2405. https://doi.org/10.1172/JCI42011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nairz M, Schleicher U, Schroll A et al (2013) Nitric oxide–mediated regulation of ferroportin-1 controls macrophage iron homeostasis and immune function in Salmonella infection. J Exp Med 210:855–873. https://doi.org/10.1084/jem.20121946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Urrutia P, Aguirre P, Esparza A et al (2013) Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem 126:541–549. https://doi.org/10.1111/jnc.12244

    Article  CAS  PubMed  Google Scholar 

  42. Raha AA, Vaishnav RA, Friedland RP et al (2013) The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer’s disease. Acta Neuropathol Commun 1:55. https://doi.org/10.1186/2051-5960-1-55

    Article  PubMed  PubMed Central  Google Scholar 

  43. Urrutia PHE (2017) Hepcidin attenuates amyloid beta-induced inflammatory and pro-oxidant responses in astrocytes and microglia. J Neurochem 142:140–152. https://doi.org/10.1111/jnc.14005

    Article  CAS  PubMed  Google Scholar 

  44. Chaston T, Chung B, Mascarenhas M et al (2008) Evidence for differential effects of hepcidin in macrophages and intestinal epithelial cells. Gut 57:374–382. https://doi.org/10.1136/gut.2007.131722

    Article  CAS  PubMed  Google Scholar 

  45. Yin X, Wu Q, Monga J et al (2017) HDAC1 governs iron homeostasis independent of histone deacetylation in iron-overload murine models. Antioxid Redox Signal ars 2017:7161

    Google Scholar 

  46. Bardai FH, Price V, Zaayman M et al (2012) Histone deacetylase-1 (HDAC1) is a molecular switch between neuronal survival and death. J Biol Chem 287:35444–35453. https://doi.org/10.1074/jbc.M112.394544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502:472–479. https://doi.org/10.1038/nature12750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Evstatiev R, Gasche C (2012) Iron sensing and signalling. Gut 61:933–952. https://doi.org/10.1136/gut.2010.214312

    Article  CAS  PubMed  Google Scholar 

  49. Anderson ER, Taylor M, Xue X et al (2013) Intestinal HIF2α promotes tissue-iron accumulation in disorders of iron overload with anemia. Proc Natl Acad Sci U S A 110:E4922–E4930. https://doi.org/10.1073/pnas.1314197110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sanchez M, Galy B, Muckenthaler MU, Hentze MW (2007) Iron-regulatory proteins limit hypoxia-inducible factor-2α expression in iron deficiency. Nat Struct Mol Biol 14:420–426. https://doi.org/10.1038/nsmb1222

    Article  CAS  PubMed  Google Scholar 

  51. Aydemir F, Jenkitkasemwong S, Gulec S, Knutson MD (2009) Iron loading increases ferroportin heterogeneous nuclear RNA and mRNA levels in murine J774 macrophages. J Nutr 139:434–438. https://doi.org/10.3945/jn.108.094052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Harada N, Kanayama M, Maruyama A et al (2011) Nrf2 regulates ferroportin 1-mediated iron efflux and counteracts lipopolysaccharide-induced ferroportin 1 mRNA suppression in macrophages. Arch Biochem Biophys 508:101–109. https://doi.org/10.1016/j.abb.2011.02.001

    Article  CAS  PubMed  Google Scholar 

  53. Taylor M, Qu A, Anderson ER et al (2011) Hypoxia-inducible factor-2α mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice. Gastroenterology 140:2044–2055. https://doi.org/10.1053/j.gastro.2011.03.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Poul Henning Jensen for providing PC12 cells and Merete Fredsgaard and Hanne Krone Nielsen, Aalborg University, Denmark, for the excellent technical assistance. We thank Assistant Professor Maj Schneider Thomsen, Aalborg University, Denmark, for the illustrative work.

Funding

The present work has been supported by The Danish Multiple Sclerosis Society, “Fonden til Lægevidenskabens Fremme,” Augustinus fonden, and the “Åse og Ejner Danielsens Fond.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torben Moos.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helgudottir, S.S., Lichota, J., Burkhart, A. et al. Hepcidin Mediates Transcriptional Changes in Ferroportin mRNA in Differentiated Neuronal-Like PC12 Cells Subjected to Iron Challenge. Mol Neurobiol 56, 2362–2374 (2019). https://doi.org/10.1007/s12035-018-1241-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1241-3

Keywords

Navigation