Skip to main content

Advertisement

Log in

Reduced Adrenomedullin Parallels Microtubule Dismantlement in Frontotemporal Lobar Degeneration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Tau is a microtubule-associated protein highly expressed in neurons with a chief role in microtubule dynamics and axonal maintenance. Adrenomedullin gene (ADM) codifies for various peptides that exert broad range of actions in the body. Previous works in our groups have shown that increased ADM products are positively correlated to microtubule disruption and tau pathology in Alzheimer’s disease brains. In the present study, we explore the involvement of ADM in the neuropathology of frontotemporal lobar degeneration that presents with primary tauopathy (FTLD-tau). Proteins from frontal cortices of FTLD-tau patients and age- and sex-matched non-demented controls were analyzed with antibodies against different microtubule components, including adrenomedullin, and synaptic markers. Tau pathology in frontal cortex from FTLD patients was confirmed. Levels of total βIII-tubulin as well as acetylated and detyrosinated tubulins, two markers of stabilized and aged microtubules, were significantly reduced and directly correlated with PSD95 and proBDNF in FTLD-tau patients when compared to non-demented controls. In contrast, no change in actin cytoskeleton was found. Interestingly, changes in microtubule elements, indicators of disturbed axonal preservation, were accompanied by decreased levels of free adrenomedullin, although no association was found. Altogether, reduced levels of adrenomedullin might not be directly linked to the microtubule pathology of FTLD-tau, but based on previous works, it is suggested that downregulation of ADM might be an adaptive attempt of neurons to mitigate microtubule disruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mann DMA, Snowden JS (2017) Frontotemporal lobar degeneration: pathogenesis, pathology and pathways to phenotype. Brain Pathol 27:723–736. https://doi.org/10.1111/bpa.12486

    Article  CAS  PubMed  Google Scholar 

  2. Kovacs GG (2015) Invited review: neuropathology of tauopathies: principles and practice. Neuropathol Appl Neurobiol 41:3–23. https://doi.org/10.1111/nan.12208

    Article  CAS  Google Scholar 

  3. Revesz T, Holton JL (2003) Anatamopathological spectrum of tauopathies. Mov Disord 18:13–20. https://doi.org/10.1002/mds.10558

    Article  Google Scholar 

  4. Mackenzie IRA, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J, Kovacs GG, Ghetti B et al (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119:1–4. https://doi.org/10.1007/s00401-009-0612-2

    Article  Google Scholar 

  5. Rademakers R, Cruts M, van Broeckhoven C (2004) The role of tau (MAPT) in frontotemporal dementia and related tauopathies. Hum Mutat 24:277–295. https://doi.org/10.1002/humu.20086

    Article  CAS  PubMed  Google Scholar 

  6. Iqbal K, Liu F, Gong C-X, Alonso Adel C, Grundke-Iqbal I (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118:53–69. https://doi.org/10.1007/s00401-009-0486-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goedert M, Spillantini MG, Cairns NJ, Crowther RA (1992) Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 8:159–168

    Article  CAS  Google Scholar 

  8. Rossi G, Tagliavini F (2015) Frontotemporal lobar degeneration: old knowledge and new insight into the pathogenetic mechanisms of tau mutations. Front Aging Neurosci 7:192. https://doi.org/10.3389/fnagi.2015.00192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sackett DL, Ozbun L, Zudaire E, Wessner L, Chirgwin JM, Cuttitta F, Martínez A (2008) Intracellular proadrenomedullin-derived peptides decorate the microtubules and contribute to cytoskeleton function. Endocrinology 149:2888–2898. https://doi.org/10.1210/en.2007-1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Larráyoz IM, Martínez A (2012) Proadrenomedullin N-terminal 20 peptide increases kinesin’s velocity both in vitro and in vivo. Endocrinology 153:1734–1742. https://doi.org/10.1210/en.2011-1685

    Article  CAS  PubMed  Google Scholar 

  11. Ferrero H, Larrayoz IM, Martisova E, Solas M, Howlett DR, Francis PT, Gil-Bea FJ, Martínez A et al (2017) Increased levels of brain adrenomedullin in the neuropathology of Alzheimer’s disease. Mol Neurobiol:1–7. https://doi.org/10.1007/s12035-017-0700-6

    Article  Google Scholar 

  12. Fernandez AP, Masa JS, Guedan MA, Futch HS, Martínez-Murillo R (2016) Adrenomedullin expression in Alzheimer’s brain. Curr Alzheimer Res 13:428–438

    Article  CAS  Google Scholar 

  13. Larrayoz IM, Ferrero H, Martisova E, Gil-Bea FJ, Ramírez MJ, Martínez A (2017) Adrenomedullin contributes to age-related memory loss in mice and is elevated in aging human brains. Front Mol Neurosci 10:384. https://doi.org/10.3389/fnmol.2017.00384

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mackenzie IRA, Neumann M, Baborie A, Sampathu DM, du Plessis D, Jaros E, Perry RH, Trojanowski JQ et al (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122:111–113. https://doi.org/10.1007/s00401-011-0845-8

    Article  PubMed  PubMed Central  Google Scholar 

  15. Forman MS, Zhukareva V, Bergeron C, Chin SS, Grossman M, Clark C, Lee VM, Trojanowski JQ (2002) Signature tau neuropathology in gray and white matter of corticobasal degeneration. Am J Pathol 160:2045–2053. https://doi.org/10.1016/S0002-9440(10)61154-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pollak D, Cairns N, Lubec G (2003) Cytoskeleton derangement in brain of patients with Down syndrome, Alzheimer’s disease and Pick’s disease. J Neural Transm Suppl:149–158

  17. Ma Q-L, Zuo X, Yang F, Ubeda OJ, Gant DJ, Alaverdyan M, Kiosea NC, Nazari S et al (2014) Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris water maze with aging. J Neurosci 34:7124–7136. https://doi.org/10.1523/JNEUROSCI.3439-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rapoport M, Dawson HN, Binder LI, Vitek MP, Ferreira A (2002) Tau is essential to beta-amyloid-induced neurotoxicity. Proc Natl Acad Sci 99:6364–6369. https://doi.org/10.1073/pnas.092136199

    Article  CAS  PubMed  Google Scholar 

  19. Hempen B, Brion JP (1996) Reduction of acetylated alpha-tubulin immunoreactivity in neurofibrillary tangle-bearing neurons in Alzheimer’s disease. J Neuropathol Exp Neurol 55:964–972

    Article  CAS  Google Scholar 

  20. Yuesong Gong Y, Lippa CF (2010) Review: disruption of the postsynaptic density in Alzheimer’s disease and other neurodegenerative dementias. Am J Alzheimer’s Dis Other Dementiasr 25:547–555. https://doi.org/10.1177/1533317510382893

    Article  Google Scholar 

  21. Guo T, Noble W, Hanger DP (2017) Roles of tau protein in health and disease. Acta Neuropathol 133:665–704. https://doi.org/10.1007/s00401-017-1707-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brunden KR, Trojanowski JQ, Smith AB et al (2014) Microtubule-stabilizing agents as potential therapeutics for neurodegenerative disease. Bioorg Med Chem 22:5040–5049. https://doi.org/10.1016/j.bmc.2013.12.046

    Article  CAS  PubMed  Google Scholar 

  23. Ishikawa T, Chen J, Wang J, Okada F, Sugiyama T, Kobayashi T, Shindo M, Higashino F et al (2003) Adrenomedullin antagonist suppresses in vivo growth of human pancreatic cancer cells in SCID mice by suppressing angiogenesis. Oncogene 22:1238–1242. https://doi.org/10.1038/sj.onc.1206207

    Article  CAS  PubMed  Google Scholar 

  24. Robinson SD, Aitken JF, Bailey RJ, Poyner DR, Hay DL (2009) Novel peptide antagonists of adrenomedullin and calcitonin gene-related peptide receptors: identification, pharmacological characterization, and interactions with position 74 in receptor activity-modifying protein 1/3. J Pharmacol Exp Ther 331:513–521. https://doi.org/10.1124/jpet.109.156448

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Brains for Dementia Research (BDR) program for the provision of human brain samples.

Funding Information

H.F. is a recipient of a fellowship from the Ministerio de Educación, Cultura y Deporte (FPU). I.M.L. is supported by a Miguel Servet contract (CP15/00198) from the “Instituto de Salud Carlos III-FEDER” (Fondo Europeo de Desarrollo Regional, a way to build Europe) and A.M. is funded by the Fundación Rioja Salud (FRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Gil-Bea.

Ethics declarations

Informed consent was obtained from the patients’ next of kin before collection of brains, and the study was approved by the UK National Research Ethics Service.

Electronic supplementary material

ESM 1

(DOCX 1380 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrero, H., Larrayoz, I.M., Solas, M. et al. Reduced Adrenomedullin Parallels Microtubule Dismantlement in Frontotemporal Lobar Degeneration. Mol Neurobiol 55, 9328–9333 (2018). https://doi.org/10.1007/s12035-018-1079-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1079-8

Keywords

Navigation