Advertisement

Human Neural Stem/Progenitor Cells Derived From Epileptic Human Brain in a Self-Assembling Peptide Nanoscaffold Improve Traumatic Brain Injury in Rats

  • Ali Jahanbazi Jahan-Abad
  • Sajad Sahab Negah
  • Hassan Hosseini Ravandi
  • Sedigheh Ghasemi
  • Maryam Borhani-Haghighi
  • Walter Stummer
  • Ali Gorji
  • Maryam Khaleghi Ghadiri
Article

Abstract

Traumatic brain injury (TBI) is a disruption in the brain functions following a head trauma. Cell therapy may provide a promising treatment for TBI. Among different cell types, human neural stem cells cultured in self-assembling peptide scaffolds have been suggested as a potential novel method for cell replacement treatment after TBI. In the present study, we accessed the effects of human neural stem/progenitor cells (hNS/PCs) derived from epileptic human brain and human adipose-derived stromal/stem cells (hADSCs) seeded in PuraMatrix hydrogel (PM) on brain function after TBI in an animal model of brain injury. hNS/PCs were isolated from patients with medically intractable epilepsy undergone epilepsy surgery. hNS/PCs and hADSCs have the potential for proliferation and differentiation into both neuronal and glial lineages. Assessment of the growth characteristics of hNS/PCs and hADSCs revealed that the hNS/PCs doubling time was significantly longer and the growth rate was lower than hADSCs. Transplantation of hNS/PCs and hADSCs seeded in PM improved functional recovery, decreased lesion volume, inhibited neuroinflammation, and reduced the reactive gliosis at the injury site. The data suggest the transplantation of hNS/PCs or hADSCs cultured in PM as a promising treatment option for cell replacement therapy in TBI.

Keywords

Tissue engineering Human neural stem cells Traumatic brain injury Epilepsy Inflammation 

Notes

Acknowledgements

This study was supported by the Iran National Science Foundation (INSF), the National Institute for Medical Research Development, and the German Academic Exchange Service (DAAD; 57348208 and 57403633) to AG.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    Zhang R, Liu Y, Yan K, Chen L, Chen X-R, Li P, Chen F-F, Jiang X-D (2013) Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation 10(1):106.  https://doi.org/10.1186/1742-2094-10-106 PubMedPubMedCentralGoogle Scholar
  2. 2.
    Lu D, Li Y, Wang L, Chen J, Mahmood A, Chopp M (2001) Intraarterial administration of marrow stromal cells in a rat model of traumatic brain injury. J Neurotrauma 18(8):813–819.  https://doi.org/10.1089/089771501316919175 CrossRefPubMedGoogle Scholar
  3. 3.
    Philips MF, Mattiasson G, Wieloch T, Björklund A, Johansson BB, Tomasevic G, Martínez-Serrano A, Lenzlinger PM et al (2001) Neuroprotective and behavioral efficacy of nerve growth factor—Transfected hippocampal progenitor cell transplants after experimental traumatic brain injury. J Neurosurg 94(5):765–774.  https://doi.org/10.3171/jns.2001.94.5.0765 CrossRefPubMedGoogle Scholar
  4. 4.
    Shindo T, Matsumoto Y, Wang Q, Kawai N, Tamiya T, Nagao S (2006) Differences in the neuronal stem cells survival, neuronal differentiation and neurological improvement after transplantation of neural stem cells between mild and severe experimental traumatic brain injury. J Med Investig 53(1, 2):42–51.  https://doi.org/10.2152/jmi.53.42 CrossRefGoogle Scholar
  5. 5.
    Shear DA, Tate MC, Archer DR, Hoffman SW, Hulce VD, LaPlaca MC, Stein DG (2004) Neural progenitor cell transplants promote long-term functional recovery after traumatic brain injury. Brain Res 1026(1):11–22.  https://doi.org/10.1016/j.brainres.2004.07.087 CrossRefPubMedGoogle Scholar
  6. 6.
    Shi W, Huang C, Xu X, Jin G, Huang R, Huang J, Chen Y, Ju S et al (2016) Transplantation of RADA16-BDNF peptide scaffold with human umbilical cord mesenchymal stem cells forced with CXCR4 and activated astrocytes for repair of traumatic brain injury. Acta Biomater 45:247–261.  https://doi.org/10.1016/j.actbio.2016.09.001 CrossRefPubMedGoogle Scholar
  7. 7.
    Francis NL, Bennett NK, Halikere A, Pang ZP, Moghe PV (2016) Self-assembling peptide nanofiber scaffolds for 3-D reprogramming and transplantation of human pluripotent stem cell-derived neurons. ACS Biomater Sci Eng 2(6):1030–1038.  https://doi.org/10.1021/acsbiomaterials.6b00156 CrossRefGoogle Scholar
  8. 8.
    Cavalcanti BN, Zeitlin BD, Nör JE (2013) A hydrogel scaffold that maintains viability and supports differentiation of dental pulp stem cells. Dent Mater 29(1):97–102.  https://doi.org/10.1016/j.dental.2012.08.002 CrossRefPubMedGoogle Scholar
  9. 9.
    Moradi F, Bahktiari M, Joghataei MT, Nobakht M, Soleimani M, Hasanzadeh G, Fallah A, Zarbakhsh S et al (2012) BD PuraMatrix peptide hydrogel as a culture system for human fetal Schwann cells in spinal cord regeneration. J Neurosci Res 90(12):2335–2348.  https://doi.org/10.1002/jnr.23120 CrossRefPubMedGoogle Scholar
  10. 10.
    Thonhoff JR, Lou DI, Jordan PM, Zhao X, Wu P (2008) Compatibility of human fetal neural stem cells with hydrogel biomaterials in vitro. Brain Res 1187:42–51.  https://doi.org/10.1016/j.brainres.2007.10.046 CrossRefPubMedGoogle Scholar
  11. 11.
    Xue S, Zhang H-T, Zhang P, Luo J, Chen Z-Z, Jang X-D, Xu R-X (2010) Functional endothelial progenitor cells derived from adipose tissue show beneficial effect on cell therapy of traumatic brain injury. Neurosci Lett 473(3):186–191.  https://doi.org/10.1016/j.neulet.2010.02.035 CrossRefPubMedGoogle Scholar
  12. 12.
    Daadi MM, Davis AS, Arac A, Li Z, Maag A-L, Bhatnagar R, Jiang K, Sun G et al (2010) Human neural stem cell grafts modify microglial response and enhance axonal sprouting in neonatal hypoxic–ischemic brain injury. Stroke 41(3):516–523.  https://doi.org/10.1161/STROKEAHA.109.573691 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Olstorn H, Moe MC, Røste GK, Bueters T, Langmoen IA (2007) Transplantation of stem cells from the adult human brain to the adult rat brain. Neurosurgery 60(6):1089–1099.  https://doi.org/10.1227/01.NEU.0000255461.91892.0D CrossRefPubMedGoogle Scholar
  14. 14.
    Liu S-J, Zou Y, Belegu V, Lv L-Y, Lin N, Wang T-Y, McDonald JW, Zhou X et al (2014) Co-grafting of neural stem cells with olfactory en sheathing cells promotes neuronal restoration in traumatic brain injury with an anti-inflammatory mechanism. J Neuroinflammation 11(1):66.  https://doi.org/10.1186/1742-2094-11-66 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Negah SS, Khooei A, Samini F, Gorji A (2017) Laminin-derived Ile-Lys-Val-ala-Val: A promising bioactive peptide in neural tissue engineering in traumatic brain injury. Cell Tissue Res 371:1–14.  https://doi.org/10.1007/s00441-017-2717-6 Google Scholar
  16. 16.
    Uemura M, Refaat MM, Shinoyama M, Hayashi H, Hashimoto N, Takahashi J (2010) Matrigel supports survival and neuronal differentiation of grafted embryonic stem cell-derived neural precursor cells. J Neurosci Res 88(3):542–551.  https://doi.org/10.1002/jnr.22223 PubMedGoogle Scholar
  17. 17.
    Shen LH, Li Y, Chen J, Cui Y, Zhang C, Kapke A, Lu M, Savant-Bhonsale S et al (2007) One-year follow-up after bone marrow stromal cell treatment in middle-aged female rats with stroke. Stroke 38(7):2150–2156.  https://doi.org/10.1161/STROKEAHA.106.481218 CrossRefPubMedGoogle Scholar
  18. 18.
    Zhao Y, Lin H, Zhang J, Chen B, Sun W, Wang X, Zhao W, Xiao Z et al (2008) Crosslinked three-dimensional demineralized bone matrix for the adipose-derived stromal cell proliferation and differentiation. Tissue Eng A 15(1):13–21.  https://doi.org/10.1089/ten.tea.2008.0039 CrossRefGoogle Scholar
  19. 19.
    Guan J, Zhu Z, Zhao RC, Xiao Z, Wu C, Han Q, Chen L, Tong W et al (2013) Transplantation of human mesenchymal stem cells loaded on collagen scaffolds for the treatment of traumatic brain injury in rats. Biomaterials 34(24):5937–5946.  https://doi.org/10.1016/j.biomaterials.2013.04.047 CrossRefPubMedGoogle Scholar
  20. 20.
    Sahab Negah S, Aligholi H, Khaksar Z, Kazemi H, Modarres Mousavi SM, Safahani M, Barati Dowom P, Gorji A (2016) Survival, proliferation, and migration of human meningioma stem-like cells in a nanopeptide scaffold. Iran J Basic Med Sci 19(12):1271–1278.  https://doi.org/10.22038/ijbms.2016.7907 Google Scholar
  21. 21.
    Negah SS, Khaksar Z, Aligholi H, Sadeghi SM, Mousavi SMM, Kazemi H, Jahan-Abad AJ, Gorji A (2016) Enhancement of neural stem cell survival, proliferation, migration, and differentiation in a novel self-assembly peptide Nanofibber scaffold. Mol Neurobiol 54:1–13.  https://doi.org/10.1007/s12035-016-0295-3 Google Scholar
  22. 22.
    Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 24(24):4337–4351.  https://doi.org/10.1016/S0142-9612(03)00340-5 CrossRefPubMedGoogle Scholar
  23. 23.
    Freed LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, Langer R (1994) Biodegradable polymer scaffolds for tissue engineering. Nat Biotechnol 12(7):689–693.  https://doi.org/10.1038/nbt0794-689 CrossRefGoogle Scholar
  24. 24.
    Lutolf M, Hubbell J (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55.  https://doi.org/10.1038/nbt1055 CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang S, Gelain F, Zhao X (2005) Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. In: Seminars in cancer biology, vol 5. Elsevier, pp 413–420  https://doi.org/10.1016/j.semcancer.2005.05.007
  26. 26.
    Zhang S, Zhao X, Spirio L (2005) PuraMatrix: Self-assembling peptide nanofiber scaffolds. Scaffolding in. Tissue Eng:217–238Google Scholar
  27. 27.
    Takei J (2006) 3-Dimensional cell culture scaffold for everyone: drug screening, tissue engineering and cancer biology. Altern Anim Test Experimentation 11(3):170–176.  https://doi.org/10.11232/aatex.11.170 Google Scholar
  28. 28.
    Sun D (2016) The potential of neural transplantation for brain repair and regeneration following traumatic brain injury. Neural Regen Res 11(1):18–22.  https://doi.org/10.4103/1673-5374.169605 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kirschenbaum B, Nedergaard M, Preuss A, Barami K, Fraser RA, Goldman SA (1994) In vitro neuronal production and differentiation by precursor cells derived from the adult human forebrain. Cereb Cortex 4(6):576–589.  https://doi.org/10.1093/cercor/4.6.576 CrossRefPubMedGoogle Scholar
  30. 30.
    Pincus D, Harrison-Restelli C, Barry J, Goodman R, Fraser R, Nedergaard M, Goldman S (1997) In vitro neurogenesis by adult human epileptic temporal neocortex. Clin Neurosurg 44:17–25. 10079997PubMedGoogle Scholar
  31. 31.
    Moe MC, Varghese M, Danilov AI, Westerlund U, Ramm-Pettersen J, Brundin L, Svensson M, Berg-Johnsen J et al (2005) Multipotent progenitor cells from the adult human brain: Neurophysiological differentiation to mature neurons. Brain 128(9):2189–2199.  https://doi.org/10.1093/brain/awh574 CrossRefPubMedGoogle Scholar
  32. 32.
    Varghese M, Olstorn H, Sandberg C, Vik-Mo EO, Noordhuis P, Nistér M, Berg-Johnsen J, Moe MC et al (2008) A comparison between stem cells from the adult human brain and from brain tumors. Neurosurgery 63(6):1022–1034.  https://doi.org/10.1227/01.NEU.0000335792.85142.B0 CrossRefPubMedGoogle Scholar
  33. 33.
    Azevedo-Pereira RL, Medei E, Mendez-Otero R, JPBMd S, Alves-Leon SV (2010) Isolation of neurosphere-like bodies from an adult patient with refractory temporal lobe epilepsy. Arq Neuropsiquiatr 68(6):956–958.  https://doi.org/10.1590/S0004-282X2010000600023 CrossRefPubMedGoogle Scholar
  34. 34.
    Abraham R, Verfaillie CM (2012) Neural differentiation and support of neuroregeneration of non-neural adult stem cells. Prog Brain Res 201:17–34.  https://doi.org/10.1016/B978-0-444-59544-7.00002-0 CrossRefPubMedGoogle Scholar
  35. 35.
    Liqing Y, Jia G, Jiqing C, Ran G, Fei C, Jie K, Yanyun W, Cheng Z (2011) Directed differentiation of motor neuron cell-like cells from human adipose-derived stem cells in vitro. Neuroreport 22(8):370–373.  https://doi.org/10.1097/WNR.0b013e3283469615 CrossRefPubMedGoogle Scholar
  36. 36.
    Jahanbazi Jahan-Abad A, Morteza-zadeh P, Sahab Negah S, Gorji A (2017) Curcumin attenuates harmful effects of arsenic on neural stem/progenitor cells. Avicenna J Phytomed:1-11. PMC5580875
  37. 37.
    Aligholi H, Rezayat SM, Azari H, Mehr SE, Akbari M, Mousavi SMM, Attari F, Alipour F et al (2016) Preparing neural stem/progenitor cells in PuraMatrix hydrogel for transplantation after brain injury in rats: A comparative methodological study. Brain Res 1642:197–208.  https://doi.org/10.1016/j.brainres.2016.03.043 CrossRefPubMedGoogle Scholar
  38. 38.
    Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32(4):1005–1011.  https://doi.org/10.1161/01.STR.32.4.1005 CrossRefPubMedGoogle Scholar
  39. 39.
    Aligholi H, Hassanzadeh G, Azari H, Rezayat SM, Mehr SE, Akbari M, Attari F, Khaksarian M et al (2014) A new and safe method for stereotactically harvesting neural stem/progenitor cells from the adult rat subventricular zone. J Neurosci Methods 225:81–89.  https://doi.org/10.1016/j.jneumeth.2013.12.008 CrossRefPubMedGoogle Scholar
  40. 40.
    Guo J, Leung KK, Su H, Yuan Q, Wang L, Chu TH, Zhang W, Pu JK et al (2009) Self-assembling peptide nanofiber scaffold promotes the reconstruction of acutely injured brain. Nanomedicine 5(3):345–351. doi:S1549–9634(08)00190–1 [pii].  https://doi.org/10.1016/j.nano.2008.12.001 CrossRefPubMedGoogle Scholar
  41. 41.
    Jahanbazi Jahan-Abad A, Alizadeh L, Sahab Negah S, Barati P, Khaleghi Ghadiri M, Meuth SG, Kovac S, Gorji A (2018) Apoptosis following cortical spreading depression in juvenile rats. Mol Neurobiol 55(5):4225–4239.  https://doi.org/10.1007/s12035-017-0642-z
  42. 42.
    Joo KM, Kang BG, Yeon JY, Cho YJ, An JY, Song HS, Won JH, Kim SJ et al (2013) Experimental and clinical factors influencing long-term stable in vitro expansion of multipotent neural cells from human adult temporal lobes. Exp Neurol 240:168–177.  https://doi.org/10.1016/j.expneurol.2012.11.021 CrossRefPubMedGoogle Scholar
  43. 43.
    Blümcke I, Schewe JC, Normann S, Brüstle O, Schramm J, Elger CE, Wiestler OD (2001) Increase of nestin-immunoreactive neural precursor cells in the dentate gyrus of pediatric patients with early-onset temporal lobe epilepsy. Hippocampus 11(3):311–321.  https://doi.org/10.1002/hipo.1045 CrossRefPubMedGoogle Scholar
  44. 44.
    Ayuso-Sacido A, Roy NS, Schwartz TH, Greenfield JP, Boockvar JA (2008) Long-term expansion of adult human brain subventricular zone precursors. Neurosurgery 62(1):223–231.  https://doi.org/10.1227/01.NEU.0000311081.50648.4C CrossRefPubMedGoogle Scholar
  45. 45.
    Walton NM, Sutter BM, Chen H-X, Chang L-J, Roper SN, Scheffler B, Steindler DA (2006) Derivation and large-scale expansion of multipotent astroglial neural progenitors from adult human brain. Development 133(18):3671–3681.  https://doi.org/10.1242/dev.02541 CrossRefPubMedGoogle Scholar
  46. 46.
    Nunes MC, Roy NS, Keyoung HM, Goodman RR, McKhann G, Jiang L, Kang J, Nedergaard M et al (2003) Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med 9(4):439–447.  https://doi.org/10.1038/nm837 CrossRefPubMedGoogle Scholar
  47. 47.
    Bliss T, Guzman R, Daadi M, Steinberg GK (2007) Cell transplantation therapy for stroke. Stroke 38(2):817–826.  https://doi.org/10.1161/01.STR.0000247888.25985.62 CrossRefPubMedGoogle Scholar
  48. 48.
    Dobrowolski S, Lepski G (2013) Stem cells in traumatic brain injury. Am J Neurosci 4(1):13Google Scholar
  49. 49.
    Hansson A, Wenger A, Henriksson HB, Li S, Johansson B, Brisby H (2017) The direction of human mesenchymal stem cells into the chondrogenic lineage is influenced by the features of hydrogel carriers. Tissue Cell 49(1):35–44.  https://doi.org/10.1016/j.tice.2016.12.004 CrossRefPubMedGoogle Scholar
  50. 50.
    Ma PX (2008) Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 60(2):184–198.  https://doi.org/10.1016/j.addr.2007.08.041 CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang S, Holmes T, Lockshin C, Rich A (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci 90(8):3334–3338.  https://doi.org/10.1073/pnas.90.8.3334 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Tang C, Shao X, Sun B, Huang W, Zhao X (2009) The effect of self-assembling peptide RADA16-I on the growth of human leukemia cells in vitro and in nude mice. Int J Mol Sci 10(5):2136–2145.  https://doi.org/10.3390/ijms10052136 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Knight VB, Serrano EE (2017) Hydrogel scaffolds promote neural gene expression and structural reorganization in human astrocyte cultures. PeerJ 5:e2829.  https://doi.org/10.7717/peerj.2829 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Weick JP (2016) Functional properties of human stem cell-derived neurons in health and disease. Stem Cells Int 2016:1–10.  https://doi.org/10.1155/2016/4190438 Google Scholar
  55. 55.
    Gupta K, Hardingham GE, Chandran S (2013) NMDA receptor-dependent glutamate excitotoxicity in human embryonic stem cell-derived neurons. Neurosci Lett 543:95–100.  https://doi.org/10.1016/j.neulet.2013.03.010 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Zhou F-W, Fortin JM, Chen H-X, Martinez-Diaz H, Chang L-J, Reynolds BA, Roper SN (2015) Functional integration of human neural precursor cells in mouse cortex. PLoS One 10(3):e0120281.  https://doi.org/10.1371/journal.pone.0120281 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zhong J, Chan A, Morad L, Kornblum HI, Fan G, Carmichael ST (2010) Hydrogel matrix to support stem cell survival after brain transplantation in stroke. Neurorehabil Neural Repair 24(7):636–644.  https://doi.org/10.1177/1545968310361958 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kizil C, Kyritsis N, Brand M (2015) Effects of inflammation on stem cells: Together they strive? EMBO Rep 16(4):416–426.  https://doi.org/10.15252/embr.201439702 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Covacu R, Brundin L (2017) Effects of neuroinflammation on neural stem cells. Neuroscientist 23(1):27–39.  https://doi.org/10.1177/1073858415616559 CrossRefGoogle Scholar
  60. 60.
    Bühnemann C, Scholz A, Bernreuther C, Malik CY, Braun H, Schachner M, Reymann KG, Dihné M (2006) Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats. Brain 129(12):3238–3248.  https://doi.org/10.1093/brain/awl261 CrossRefPubMedGoogle Scholar
  61. 61.
    Coulthard LG, Hawksworth OA, Li R, Balachandran A, Lee JD, Sepehrband F, Kurniawan N, Jeanes A et al (2017) Complement C5aR1 signaling promotes polarization and proliferation of embryonic neural progenitor cells through PKCζ. J Neurosci 37(22):5395–5407.  https://doi.org/10.1523/JNEUROSCI.0525-17 CrossRefPubMedGoogle Scholar
  62. 62.
    Li X, Cheng S, Wu Y, Ying J, Wang C, Wen T, Bai X, Ji W et al (2017) Functional self-assembled peptide scaffold inhibits TNF-alpha-induced inflammation and apoptosis in nucleus pulposus cells by suppressing NF-κB signaling. J Biomed Mater Res A 106:1082–1091.  https://doi.org/10.1002/jbm.a.36301 CrossRefPubMedGoogle Scholar
  63. 63.
    Wu H, Zhou T, Tian L, Xia Z, Xu F (2017) Self-assembling RADA16-I peptide hydrogel scaffold loaded with tamoxifen for breast reconstruction. Biomed Res Int 2017:1–10.  https://doi.org/10.1155/2017/3656193 Google Scholar
  64. 64.
    Liedmann A, Frech S, Morgan PJ, Rolfs A, Frech MJ (2012) Differentiation of human neural progenitor cells in functionalized hydrogel matrices. Biores Open Access 1(1):16–24.  https://doi.org/10.1089/biores.2012.0209 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Karve IP, Taylor JM, Crack PJ (2016) The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol 173(4):692–702.  https://doi.org/10.1111/bph.13125 CrossRefPubMedGoogle Scholar
  66. 66.
    Jassam YN, Izzy S, Whalen M, McGavern DB, El Khoury J (2017) Neuroimmunology of traumatic brain injury: Time for a paradigm shift. Neuron 95(6):1246–1265.  https://doi.org/10.1016/j.neuron.2017.07.010 CrossRefPubMedGoogle Scholar
  67. 67.
    Woodcock T, Morganti-Kossmann MC (2013) The role of markers of inflammation in traumatic brain injury. Front Neurol 4.  https://doi.org/10.3389/fneur.2013.00018
  68. 68.
    Corrigan F, Mander KA, Leonard AV, Vink R (2016) Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J Neuroinflammation 13(1):264.  https://doi.org/10.1186/s12974-016-0738-9 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Lucke-Wold BP, Nguyen L, Turner RC, Logsdon AF, Chen Y-W, Smith KE, Huber JD, Matsumoto R et al (2015) Traumatic brain injury and epilepsy: Underlying mechanisms leading to seizure. Seizure 33:13–23.  https://doi.org/10.1016/j.seizure.2015.10.002 CrossRefPubMedGoogle Scholar
  70. 70.
    Shetty AK (2011) Progress in cell grafting therapy for temporal lobe epilepsy. Neurotherapeutics 8(4):721–735.  https://doi.org/10.1007/s13311-011-0064-y CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Hunt RF, Baraban SC (2015) Interneuron transplantation as a treatment for epilepsy. Cold Spring Harb Perspect Med 5(12):a022376.  https://doi.org/10.1101/cshperspect.a022376 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Campbell JN, Gandhi A, Singh B, Churn SB (2014) Traumatic brain injury causes a tacrolimus-sensitive increase in non-convulsive seizures in a rat model of post-traumatic epilepsy. Int J Neurol Brain Disord 1(1):1 PMC4287390PubMedPubMedCentralGoogle Scholar
  73. 73.
    Beretta S, Cunningham KM, Haus DL, Gold EM, Perez H, López-Velázquez L, Cummings BJ (2017) Effects of human ES-derived neural stem cell transplantation and kindling in a rat model of traumatic brain injury. Cell Transplant 26(7):1247–1261.  https://doi.org/10.1177/0963689717714107 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Krabbe C, Zimmer J, Meyer M (2005) Neural transdifferentiation of mesenchymal stem cells–a critical review. APMIS 113(11–12):831–844.  https://doi.org/10.1111/j.1600-0463.2005.apm_3061.x CrossRefPubMedGoogle Scholar
  75. 75.
    Ringe J, Kaps C, Burmester G-R, Sittinger M (2002) Stem cells for regenerative medicine: Advances in the engineering of tissues and organs. Naturwissenschaften 89(8):338–351.  https://doi.org/10.1007/s00114-002-0344-9 CrossRefPubMedGoogle Scholar
  76. 76.
    Yan Z-J, Zhang P, Hu Y-Q, Zhang H-T, Hong S-Q, Zhou H-L, Zhang M-Y, Xu R-X (2013) Neural stem-like cells derived from human amnion tissue are effective in treating traumatic brain injury in rat. Neurochem Res 38(5):1022–1033.  https://doi.org/10.1007/s11064-013-1012-5 CrossRefPubMedGoogle Scholar
  77. 77.
    Zhang L, Wang L-M, Chen W-W, Ma Z, Han X, Liu C-M, Cheng X, Shi W et al (2017) Neural differentiation of human Wharton's jelly-derived mesenchymal stem cells improves the recovery of neurological function after transplantation in ischemic stroke rats. Neural Regen Res 12(7):1103–1110.  https://doi.org/10.4103/1673-5374.211189 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Nam H, Lee KH, Nam DH, Joo KM (2015) Adult human neural stem cell therapeutics: Current developmental status and prospect. World J Stem Cells 7(1):126–136.  https://doi.org/10.4252/wjsc.v7.i1.126 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ali Jahanbazi Jahan-Abad
    • 1
    • 2
  • Sajad Sahab Negah
    • 1
    • 3
  • Hassan Hosseini Ravandi
    • 1
  • Sedigheh Ghasemi
    • 1
  • Maryam Borhani-Haghighi
    • 1
  • Walter Stummer
    • 4
  • Ali Gorji
    • 1
    • 3
    • 4
    • 5
    • 6
  • Maryam Khaleghi Ghadiri
    • 4
  1. 1.Shefa Neuroscience Research CenterKhatam Alanbia HospitalTehranIran
  2. 2.Department of Clinical BiochemistryShahid Beheshti University of Medical SciencesTehranIran
  3. 3.Department of Neuroscience, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
  4. 4.Department of NeurosurgeryWestfälische Wilhelms-Universität MünsterMünsterGermany
  5. 5.Department of NeurologyWestfälische Wilhelms-Universität MünsterMünsterGermany
  6. 6.Epilepsy Research CenterWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations