Advertisement

Impact of Hypoglycemia on Brain Metabolism During Diabetes

  • Ashish K. Rehni
  • Kunjan R. Dave
Article

Abstract

Diabetes is a metabolic disease afflicting millions of people worldwide. A substantial fraction of world’s total healthcare expenditure is spent on treating diabetes. Hypoglycemia is a serious consequence of anti-diabetic drug therapy, because it induces metabolic alterations in the brain. Metabolic alterations are one of the central mechanisms mediating hypoglycemia-related functional changes in the brain. Acute, chronic, and/or recurrent hypoglycemia modulate multiple metabolic pathways, and exposure to hypoglycemia increases consumption of alternate respiratory substrates such as ketone bodies, glycogen, and monocarboxylates in the brain. The aim of this review is to discuss hypoglycemia-induced metabolic alterations in the brain in glucose counterregulation, uptake, utilization and metabolism, cellular respiration, amino acid and lipid metabolism, and the significance of other sources of energy. The present review summarizes information on hypoglycemia-induced metabolic changes in the brain of diabetic and non-diabetic subjects and the manner in which they may affect brain function.

Keywords

Neuron Glucose Metabolomics Glucose transporters Lipid metabolism Amino acid metabolism 

Notes

Acknowledgements

This study was supported by National Institutes of Health grant NS073779. We would like to thank Dr. Brant Watson for critical reading of this manuscript.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    International Diabetes Federation (2017). http://www.diabetesatlas.org/key-messages.html. Accessed 1.3.2018
  2. 2.
    Diabetes Control Complications Trial Research Group, Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L, Siebert C (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329 (14):977-986. doi: https://doi.org/10.1056/NEJM199309303291401
  3. 3.
    U. K. Hypoglycaemia Study Group (2007) Risk of hypoglycaemia in types 1 and 2 diabetes: effects of treatment modalities and their duration. Diabetologia 50(6):1140–1147.  https://doi.org/10.1007/s00125-007-0599-y CrossRefGoogle Scholar
  4. 4.
    Zammitt NN, Frier BM (2005) Hypoglycemia in type 2 diabetes: pathophysiology, frequency, and effects of different treatment modalities. Diabetes Care 28(12):2948–2961PubMedCrossRefGoogle Scholar
  5. 5.
    Cryer PE (2002) Hypoglycaemia: the limiting factor in the glycaemic management of Type I and Type II diabetes. Diabetologia 45(7):937–948.  https://doi.org/10.1007/s00125-002-0822-9 PubMedCrossRefGoogle Scholar
  6. 6.
    American Diabetes Association Workgroup on Hypoglycemia (2005) Defining and reporting hypoglycemia in diabetes: a report from the American Diabetes Association Workgroup on Hypoglycemia. Diabetes Care 28(5):1245–1249CrossRefGoogle Scholar
  7. 7.
    Donnelly LA, Morris AD, Frier BM, Ellis JD, Donnan PT, Durrant R, Band MM, Reekie G et al (2005) Frequency and predictors of hypoglycaemia in Type 1 and insulin-treated Type 2 diabetes: a population-based study. Diabet Med 22(6):749–755.  https://doi.org/10.1111/j.1464-5491.2005.01501.x PubMedCrossRefGoogle Scholar
  8. 8.
    Gehlaut RR, Dogbey GY, Schwartz FL, Marling CR, Shubrook JH (2015) Hypoglycemia in Type 2 Diabetes--More Common Than You Think: A Continuous Glucose Monitoring Study. J Diabetes Sci Technol 9(5):999–1005.  https://doi.org/10.1177/1932296815581052 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Holstein A, Hammer C, Plaschke A, Ptak M, Kuhn J, Diekmann J, Kleesiek K, Egberts EH (2004) Hormonal counterregulation during severe hypoglycaemia under everyday conditions in patients with type 1 and insulin-treated type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 112(8):429–434.  https://doi.org/10.1055/s-2004-821188 PubMedCrossRefGoogle Scholar
  10. 10.
    Hansen TI, Olsen SE, Haferstrom ECD, Sand T, Frier BM, Haberg AK, Bjorgaas MR (2017) Cognitive deficits associated with impaired awareness of hypoglycaemia in type 1 diabetes. Diabetologia 60(6):971–979.  https://doi.org/10.1007/s00125-017-4233-3 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ryan CM, Klein BEK, Lee KE, Cruickshanks KJ, Klein R (2016) Associations between recent severe hypoglycemia, retinal vessel diameters, and cognition in adults with type 1 diabetes. J Diabetes Complications 30(8):1513–1518.  https://doi.org/10.1016/j.jdiacomp.2016.08.010 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Whitmer RA, Karter AJ, Yaffe K, Quesenberry CP Jr, Selby JV (2009) Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. JAMA 301(15):1565–1572.  https://doi.org/10.1001/jama.2009.460 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Languren G, Montiel T, Julio-Amilpas A, Massieu L (2013) Neuronal damage and cognitive impairment associated with hypoglycemia: An integrated view. Neurochem Int 63(4):331–343.  https://doi.org/10.1016/j.neuint.2013.06.018 PubMedCrossRefGoogle Scholar
  14. 14.
    Keymeulen B, Jacobs A, de Metz K, de Sadeleer C, Bossuyt A, Somers G (1995) Regional cerebral hypoperfusion in long-term type 1 (insulin-dependent) diabetic patients: relation to hypoglycaemic events. Nucl Med Commun 16(1):10–16PubMedCrossRefGoogle Scholar
  15. 15.
    Sarti C, Pantoni L, Bartolini L, Inzitari D (2002) Cognitive impairment and chronic cerebral hypoperfusion: what can be learned from experimental models. J Neurol Sci 203-204:263–266PubMedCrossRefGoogle Scholar
  16. 16.
    Won SJ, Yoo BH, Kauppinen TM, Choi BY, Kim JH, Jang BG, Lee MW, Sohn M et al (2012) Recurrent/moderate hypoglycemia induces hippocampal dendritic injury, microglial activation, and cognitive impairment in diabetic rats. J Neuroinflammation 9:182.  https://doi.org/10.1186/1742-2094-9-182 PubMedPubMedCentralGoogle Scholar
  17. 17.
    Towler DA, Havlin CE, Craft S, Cryer P (1993) Mechanism of awareness of hypoglycemia. Perception of neurogenic (predominantly cholinergic) rather than neuroglycopenic symptoms. Diabetes 42(12):1791–1798PubMedCrossRefGoogle Scholar
  18. 18.
    Fanelli C, Pampanelli S, Epifano L, Rambotti AM, Ciofetta M, Modarelli F, Di Vincenzo A, Annibale B et al (1994) Relative roles of insulin and hypoglycaemia on induction of neuroendocrine responses to, symptoms of, and deterioration of cognitive function in hypoglycaemia in male and female humans. Diabetologia 37(8):797–807PubMedCrossRefGoogle Scholar
  19. 19.
    Mitrakou A, Ryan C, Veneman T, Mokan M, Jenssen T, Kiss I, Durrant J, Cryer P et al (1991) Hierarchy of glycemic thresholds for counterregulatory hormone secretion, symptoms, and cerebral dysfunction. Am J Physiol 260(1 Pt 1):E67–E74PubMedGoogle Scholar
  20. 20.
    Schwartz NS, Clutter WE, Shah SD, Cryer PE (1987) Glycemic thresholds for activation of glucose counterregulatory systems are higher than the threshold for symptoms. J Clin Invest 79(3):777–781.  https://doi.org/10.1172/JCI112884 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Cryer PE (1994) Banting Lecture. Hypoglycemia: the limiting factor in the management of IDDM. Diabetes 43(11):1378–1389PubMedCrossRefGoogle Scholar
  22. 22.
    Rizza RA, Cryer PE, Gerich JE (1979) Role of glucagon, catecholamines, and growth hormone in human glucose counterregulation. Effects of somatostatin and combined alpha- and beta-adrenergic blockade on plasma glucose recovery and glucose flux rates after insulin-induced hypoglycemia. J Clin Invest 64(1):62–71.  https://doi.org/10.1172/JCI109464 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Boyle PJ, Cryer PE (1991) Growth hormone, cortisol, or both are involved in defense against, but are not critical to recovery from, hypoglycemia. Am J Physiol 260(3 Pt 1):E395–E402PubMedGoogle Scholar
  24. 24.
    De Feo P, Perriello G, Torlone E, Ventura MM, Fanelli C, Santeusanio F, Brunetti P, Gerich JE et al (1989) Contribution of cortisol to glucose counterregulation in humans. Am J Physiol 257(1 Pt 1):E35–E42PubMedGoogle Scholar
  25. 25.
    De Feo P, Perriello G, Torlone E, Ventura MM, Santeusanio F, Brunetti P, Gerich JE, Bolli GB (1989) Demonstration of a role for growth hormone in glucose counterregulation. Am J Physiol 256(6 Pt 1):E835–E843PubMedGoogle Scholar
  26. 26.
    Dagogo-Jack SE, Craft S, Cryer PE (1993) Hypoglycemia-associated autonomic failure in insulin-dependent diabetes mellitus. Recent antecedent hypoglycemia reduces autonomic responses to, symptoms of, and defense against subsequent hypoglycemia. J Clin Invest 91(3):819–828.  https://doi.org/10.1172/JCI116302 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Davis SN, Shavers C, Mosqueda-Garcia R, Costa F (1997) Effects of differing antecedent hypoglycemia on subsequent counterregulation in normal humans. Diabetes 46(8):1328–1335PubMedCrossRefGoogle Scholar
  28. 28.
    Heller SR, Cryer PE (1991) Reduced neuroendocrine and symptomatic responses to subsequent hypoglycemia after 1 episode of hypoglycemia in nondiabetic humans. Diabetes 40(2):223–226PubMedCrossRefGoogle Scholar
  29. 29.
    Bolli GB, De Feo P, De Cosmo S, Perriello G, Ventura MM, Benedetti MM, Santeusanio F, Gerich JE et al (1984) A reliable and reproducible test for adequate glucose counterregulation in type I diabetes mellitus. Diabetes 33(8):732–737PubMedCrossRefGoogle Scholar
  30. 30.
    White NH, Skor DA, Cryer PE, Levandoski LA, Bier DM, Santiago JV (1983) Identification of type I diabetic patients at increased risk for hypoglycemia during intensive therapy. N Engl J Med 308(9):485–491.  https://doi.org/10.1056/NEJM198303033080903 PubMedCrossRefGoogle Scholar
  31. 31.
    Segel SA, Paramore DS, Cryer PE (2002) Hypoglycemia-associated autonomic failure in advanced type 2 diabetes. Diabetes 51(3):724–733PubMedCrossRefGoogle Scholar
  32. 32.
  33. 33.
    Lubow JM, Pinon IG, Avogaro A, Cobelli C, Treeson DM, Mandeville KA, Toffolo G, Boyle PJ (2006) Brain oxygen utilization is unchanged by hypoglycemia in normal humans: lactate, alanine, and leucine uptake are not sufficient to offset energy deficit. Am J Physiol Endocrinol Metab 290(1):E149–E153.  https://doi.org/10.1152/ajpendo.00049.2005 PubMedCrossRefGoogle Scholar
  34. 34.
    Wahren J, Ekberg K, Fernqvist-Forbes E, Nair S (1999) Brain substrate utilisation during acute hypoglycaemia. Diabetologia 42(7):812–818PubMedCrossRefGoogle Scholar
  35. 35.
    Gruetter R, Ugurbil K, Seaquist ER (1998) Steady-state cerebral glucose concentrations and transport in the human brain. J Neurochem 70(1):397–408PubMedCrossRefGoogle Scholar
  36. 36.
    Choi IY, Lee SP, Kim SG, Gruetter R (2001) In vivo measurements of brain glucose transport using the reversible Michaelis-Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia. J Cereb Blood Flow Metab 21(6):653–663.  https://doi.org/10.1097/00004647-200106000-00003 PubMedCrossRefGoogle Scholar
  37. 37.
    Pao SS, Paulsen IT, Saier MH Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62(1):1–34PubMedPubMedCentralGoogle Scholar
  38. 38.
    Arbuckle MI, Kane S, Porter LM, Seatter MJ, Gould GW (1996) Structure-function analysis of liver-type (GLUT2) and brain-type (GLUT3) glucose transporters: expression of chimeric transporters in Xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity. Biochemistry 35(51):16519–16527.  https://doi.org/10.1021/bi962210n PubMedCrossRefGoogle Scholar
  39. 39.
    Fukumoto H, Kayano T, Buse JB, Edwards Y, Pilch PF, Bell GI, Seino S (1989) Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin-responsive tissues. J Biol Chem 264(14):7776–7779PubMedGoogle Scholar
  40. 40.
    Fukumoto H, Seino S, Imura H, Seino Y, Eddy RL, Fukushima Y, Byers MG, Shows TB et al (1988) Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proc Natl Acad Sci U S A 85(15):5434–5438PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Mueckler M, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR, Allard WJ, Lienhard GE et al (1985) Sequence and structure of a human glucose transporter. Science 229(4717):941–945PubMedCrossRefGoogle Scholar
  42. 42.
    Doege H, Bocianski A, Scheepers A, Axer H, Eckel J, Joost HG, Schurmann A (2001) Characterization of human glucose transporter (GLUT) 11 (encoded by SLC2A11), a novel sugar-transport facilitator specifically expressed in heart and skeletal muscle. Biochem J 359(Pt 2):443–449PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Joost HG, Bell GI, Best JD, Birnbaum MJ, Charron MJ, Chen YT, Doege H, James DE et al (2002) Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am J Physiol Endocrinol Metab 282(4):E974–E976.  https://doi.org/10.1152/ajpendo.00407.2001 PubMedCrossRefGoogle Scholar
  44. 44.
    Birnbaum MJ, Haspel HC, Rosen OM (1986) Cloning and characterization of a cDNA encoding the rat brain glucose-transporter protein. Proc Natl Acad Sci U S A 83(16):5784–5788PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Brant AM, Jess TJ, Milligan G, Brown CM, Gould GW (1993) Immunological analysis of glucose transporters expressed in different regions of the rat brain and central nervous system. Biochem Biophys Res Commun 192(3):1297–1302.  https://doi.org/10.1006/bbrc.1993.1557 PubMedCrossRefGoogle Scholar
  46. 46.
    Kasanicki MA, Cairns MT, Davies A, Gardiner RM, Baldwin SA (1987) Identification and characterization of the glucose-transport protein of the bovine blood/brain barrier. Biochem J 247(1):101–108PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Maher F, Vannucci SJ, Simpson IA (1994) Glucose transporter proteins in brain. FASEB J 8(13):1003–1011PubMedCrossRefGoogle Scholar
  48. 48.
    Mantych GJ, James DE, Chung HD, Devaskar SU (1992) Cellular localization and characterization of Glut 3 glucose transporter isoform in human brain. Endocrinology 131(3):1270–1278.  https://doi.org/10.1210/endo.131.3.1505464 PubMedCrossRefGoogle Scholar
  49. 49.
    Mantych GJ, James DE, Devaskar SU (1993) Jejunal/kidney glucose transporter isoform (Glut-5) is expressed in the human blood-brain barrier. Endocrinology 132(1):35–40.  https://doi.org/10.1210/endo.132.1.8419132 PubMedCrossRefGoogle Scholar
  50. 50.
    Nagamatsu S, Sawa H, Kamada K, Nakamichi Y, Yoshimoto K, Hoshino T (1993) Neuron-specific glucose transporter (NSGT): CNS distribution of GLUT3 rat glucose transporter (RGT3) in rat central neurons. FEBS Lett 334(3):289–295PubMedCrossRefGoogle Scholar
  51. 51.
    Payne J, Maher F, Simpson I, Mattice L, Davies P (1997) Glucose transporter Glut 5 expression in microglial cells. Glia 21(3):327–331PubMedCrossRefGoogle Scholar
  52. 52.
    Shepherd PR, Gibbs EM, Wesslau C, Gould GW, Kahn BB (1992) Human small intestine facilitative fructose/glucose transporter (GLUT5) is also present in insulin-responsive tissues and brain. Investigation of biochemical characteristics and translocation. Diabetes 41(10):1360–1365PubMedCrossRefGoogle Scholar
  53. 53.
    Simpson IA, Appel NM, Hokari M, Oki J, Holman GD, Maher F, Koehler-Stec EM, Vannucci SJ et al (1999) Blood-brain barrier glucose transporter: effects of hypo- and hyperglycemia revisited. J Neurochem 72(1):238–247PubMedCrossRefGoogle Scholar
  54. 54.
    Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27(11):1766–1791.  https://doi.org/10.1038/sj.jcbfm.9600521 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Maher F, Davies-Hill TM, Simpson IA (1996) Substrate specificity and kinetic parameters of GLUT3 in rat cerebellar granule neurons. Biochem J 315(Pt 3):827–831PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Boado RJ, Pardridge WM (1993) Glucose deprivation causes posttranscriptional enhancement of brain capillary endothelial glucose transporter gene expression via GLUT1 mRNA stabilization. J Neurochem 60(6):2290–2296PubMedCrossRefGoogle Scholar
  57. 57.
    Koranyi L, Bourey RE, James D, Mueckler M, Fiedorek FT, Jr., Permutt MA (1991) Glucose transporter gene expression in rat brain: Pretranslational changes associated with chronic insulin-induced hypoglycemia, fasting, and diabetes. Mol Cell Neurosci 2 (3):244-252Google Scholar
  58. 58.
    Kumagai AK, Kang YS, Boado RJ, Pardridge WM (1995) Upregulation of blood-brain barrier GLUT1 glucose transporter protein and mRNA in experimental chronic hypoglycemia. Diabetes 44(12):1399–1404PubMedCrossRefGoogle Scholar
  59. 59.
    Antony S, Peeyush Kumar T, Mathew J, Anju TR, Paulose CS (2010) Hypoglycemia induced changes in cholinergic receptor expression in the cerebellum of diabetic rats. J Biomed Sci 17:7.  https://doi.org/10.1186/1423-0127-17-7 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Lee DH, Chung MY, Lee JU, Kang DG, Paek YW (2000) Changes of glucose transporters in the cerebral adaptation to hypoglycemia. Diabetes Res Clin Pract 47(1):15–23PubMedCrossRefGoogle Scholar
  61. 61.
    Uehara Y, Nipper V, McCall AL (1997) Chronic insulin hypoglycemia induces GLUT-3 protein in rat brain neurons. Am J Physiol 272(4 Pt 1):E716–E719PubMedGoogle Scholar
  62. 62.
    Vavaiya KV, Briski KP (2008) Effects of caudal fourth ventricular lactate infusion on hypoglycemia-associated MCT2, GLUT3, GLUT4, GCK, and sulfonylurea receptor-1 gene expression in the ovariectomized female rat LHA and VMH: impact of estradiol. J Mol Neurosci 34(2):121–129.  https://doi.org/10.1007/s12031-007-9020-z PubMedCrossRefGoogle Scholar
  63. 63.
    Vavaiya KV, Briski KP (2008) Effects of caudal hindbrain lactate infusion on insulin-induced hypoglycemia and neuronal substrate transporter glucokinase and sulfonylurea receptor-1 gene expression in the ovariectomized female rat dorsal vagal complex: Impact of estradiol. J Neurosci Res 86(3):694–701.  https://doi.org/10.1002/jnr.21530 PubMedCrossRefGoogle Scholar
  64. 64.
    Vavaiya KV, Paranjape SA, Patil GD, Briski KP (2006) Vagal complex monocarboxylate transporter-2 expression during hypoglycemia. Neuroreport 17(10):1023–1026.  https://doi.org/10.1097/01.wnr.0000224766.07702.51 PubMedCrossRefGoogle Scholar
  65. 65.
    Boyle PJ, Nagy RJ, O'Connor AM, Kempers SF, Yeo RA, Qualls C (1994) Adaptation in brain glucose uptake following recurrent hypoglycemia. Proc Natl Acad Sci U S A 91(20):9352–9356PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    McCall AL, Fixman LB, Fleming N, Tornheim K, Chick W, Ruderman NB (1986) Chronic hypoglycemia increases brain glucose transport. Am J Physiol 251(4 Pt 1):E442–E447PubMedGoogle Scholar
  67. 67.
    Pelligrino DA, Segil LJ, Albrecht RF (1990) Brain glucose utilization and transport and cortical function in chronic vs. acute hypoglycemia. Am J Physiol 259(5 Pt 1):E729–E735PubMedGoogle Scholar
  68. 68.
    Russo VC, Kobayashi K, Najdovska S, Baker NL, Werther GA (2004) Neuronal protection from glucose deprivation via modulation of glucose transport and inhibition of apoptosis: a role for the insulin-like growth factor system. Brain Res 1009(1-2):40–53.  https://doi.org/10.1016/j.brainres.2004.02.042 PubMedCrossRefGoogle Scholar
  69. 69.
    Boyle PJ, Kempers SF, O'Connor AM, Nagy RJ (1995) Brain glucose uptake and unawareness of hypoglycemia in patients with insulin-dependent diabetes mellitus. N Engl J Med 333(26):1726–1731.  https://doi.org/10.1056/NEJM199512283332602 PubMedCrossRefGoogle Scholar
  70. 70.
    Jiang L, Herzog RI, Mason GF, de Graaf RA, Rothman DL, Sherwin RS, Behar KL (2009) Recurrent antecedent hypoglycemia alters neuronal oxidative metabolism in vivo. Diabetes 58(6):1266–1274.  https://doi.org/10.2337/db08-1664 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Duelli R, Staudt R, Duembgen L, Kuschinsky W (1999) Increase in glucose transporter densities of Glut3 and decrease of glucose utilization in rat brain after one week of hypoglycemia. Brain Res 831(1-2):254–262PubMedCrossRefGoogle Scholar
  72. 72.
    Herzog RI, Jiang L, Herman P, Zhao C, Sanganahalli BG, Mason GF, Hyder F, Rothman DL et al (2013) Lactate preserves neuronal metabolism and function following antecedent recurrent hypoglycemia. J Clin Invest 123(5):1988–1998.  https://doi.org/10.1172/JCI65105 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28(5):897–916PubMedCrossRefGoogle Scholar
  74. 74.
    Suda S, Shinohara M, Miyaoka M, Lucignani G, Kennedy C, Sokoloff L (1990) The lumped constant of the deoxyglucose method in hypoglycemia: effects of moderate hypoglycemia on local cerebral glucose utilization in the rat. J Cereb Blood Flow Metab 10(4):499–509.  https://doi.org/10.1038/jcbfm.1990.92 PubMedCrossRefGoogle Scholar
  75. 75.
    Abdul-Rahman A, Siesjo BK (1980) Local cerebral glucose consumption during insulin-induced hypoglycemia, and in the recovery period following glucose administration. Acta Physiol Scand 110(2):149–159.  https://doi.org/10.1111/j.1748-1716.1980.tb06645.x PubMedCrossRefGoogle Scholar
  76. 76.
    Bryan RM Jr, Keefer KA, MacNeill C (1986) Regional cerebral glucose utilization during insulin-induced hypoglycemia in unanesthetized rats. J Neurochem 46(6):1904–1911PubMedCrossRefGoogle Scholar
  77. 77.
    Ghajar JB, Plum F, Duffy TE (1982) Cerebral oxidative metabolism and blood flow during acute hypoglycemia and recovery in unanesthetized rats. J Neurochem 38(2):397–409PubMedCrossRefGoogle Scholar
  78. 78.
    Segel SA, Fanelli CG, Dence CS, Markham J, Videen TO, Paramore DS, Powers WJ, Cryer PE (2001) Blood-to-brain glucose transport, cerebral glucose metabolism, and cerebral blood flow are not increased after hypoglycemia. Diabetes 50(8):1911–1917PubMedCrossRefGoogle Scholar
  79. 79.
    van de Ven KC, de Galan BE, van der Graaf M, Shestov AA, Henry PG, Tack CJ, Heerschap A (2011) Effect of acute hypoglycemia on human cerebral glucose metabolism measured by (1)(3)C magnetic resonance spectroscopy. Diabetes 60(5):1467–1473.  https://doi.org/10.2337/db10-1592 PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Caprio S, Amiel S, Tamborlane WV, Gelfand RA, Sherwin RS (1990) Defective free-fatty acid and oxidative glucose metabolism in IDDM during hypoglycemia. Influence of glycemic control. Diabetes 39(2):134–141PubMedCrossRefGoogle Scholar
  81. 81.
    McNay EC, Sherwin RS (2004) Effect of recurrent hypoglycemia on spatial cognition and cognitive metabolism in normal and diabetic rats. Diabetes 53(2):418–425PubMedCrossRefGoogle Scholar
  82. 82.
    Meisenberg G Simmons, W.H. (2012) Tricarboxylic Acid Cycle, and Oxidative Phosphorylation. In: Principles of Medical Biochemistry. Third edn. Saunders, an imprint of Elsevier, Inc, pp. 347–373Google Scholar
  83. 83.
    Marin-Hernandez A, Lopez-Ramirez SY, Del Mazo-Monsalvo I, Gallardo-Perez JC, Rodriguez-Enriquez S, Moreno-Sanchez R, Saavedra E (2014) Modeling cancer glycolysis under hypoglycemia, and the role played by the differential expression of glycolytic isoforms. FEBS J 281(15):3325–3345.  https://doi.org/10.1111/febs.12864 PubMedCrossRefGoogle Scholar
  84. 84.
    Osundiji MA, Hurst P, Moore SP, Markkula SP, Yueh CY, Swamy A, Hoashi S, Shaw JS et al (2011) Recurrent hypoglycemia increases hypothalamic glucose phosphorylation activity in rats. Metabolism 60(4):550–556.  https://doi.org/10.1016/j.metabol.2010.05.009 PubMedCrossRefGoogle Scholar
  85. 85.
    Poplawski MM, Mastaitis JW, Yang XJ, Mobbs CV (2010) Hypothalamic responses to fasting indicate metabolic reprogramming away from glycolysis toward lipid oxidation. Endocrinology 151(11):5206–5217.  https://doi.org/10.1210/en.2010-0702 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Amaral AI, Teixeira AP, Sonnewald U, Alves PM (2011) Estimation of intracellular fluxes in cerebellar neurons after hypoglycemia: importance of the pyruvate recycling pathway and glutamine oxidation. J Neurosci Res 89(5):700–710.  https://doi.org/10.1002/jnr.22571 PubMedCrossRefGoogle Scholar
  87. 87.
    Telushkin PK, Nozdrachev AD, Potapov PP, Medvedeva NB, Stel'makh AY (2005) Glycolysis and oxidtion enzyme activity in rat brain during insulin-induced hypoglycemia against the background of alloxan-induced diabetes mellitus. Bull Exp Biol Med 140(6):695–697PubMedCrossRefGoogle Scholar
  88. 88.
    Magen A, Koren-Schwartzer N, Chen-Zion M, Beitner R (1995) Effect of insulin-induced hypoglycemia on cytoskeleton-bound and cytosolic phosphofructokinase and the levels of glucose 1,6-bisphosphate in rat brain. Biochem Mol Med 56(2):94–98PubMedCrossRefGoogle Scholar
  89. 89.
    van de Ven KC, Tack CJ, Heerschap A, van der Graaf M, de Galan BE (2013) Patients with type 1 diabetes exhibit altered cerebral metabolism during hypoglycemia. J Clin Invest 123(2):623–629.  https://doi.org/10.1172/JCI62742 PubMedPubMedCentralGoogle Scholar
  90. 90.
    Sutherland GR, Tyson RL, Auer RN (2008) Truncation of the krebs cycle during hypoglycemic coma. Med Chem 4(4):379–385PubMedCrossRefGoogle Scholar
  91. 91.
    Gallagher CN, Carpenter KL, Grice P, Howe DJ, Mason A, Timofeev I, Menon DK, Kirkpatrick PJ et al (2009) The human brain utilizes lactate via the tricarboxylic acid cycle: a 13C-labelled microdialysis and high-resolution nuclear magnetic resonance study. Brain 132(Pt 10):2839–2849.  https://doi.org/10.1093/brain/awp202 PubMedCrossRefGoogle Scholar
  92. 92.
    Nelson DL, Cox MM (2004) Oxidative phosphorylation and photophosphorylation. In: Nelson DL, Cox MM (eds) Lehninger's principles of biochemistry, 4th edn. W. H. Freeman, New York, pp. 691–750Google Scholar
  93. 93.
    Schultz BE, Chan SI (2001) Structures and proton-pumping strategies of mitochondrial respiratory enzymes. Annu Rev Biophys Biomol Struct 30:23–65.  https://doi.org/10.1146/annurev.biophys.30.1.23 PubMedCrossRefGoogle Scholar
  94. 94.
    Cardoso S, Santos MS, Seica R, Moreira PI (2010) Cortical and hippocampal mitochondria bioenergetics and oxidative status during hyperglycemia and/or insulin-induced hypoglycemia. Biochim Biophys Acta 1802(11):942–951.  https://doi.org/10.1016/j.bbadis.2010.07.001 PubMedCrossRefGoogle Scholar
  95. 95.
    Pelligrino DA, Becker GL, Miletich DJ, Albrecht RF (1989) Cerebral mitochondrial respiration in diabetic and chronically hypoglycemic rats. Brain Res 479(2):241–246PubMedCrossRefGoogle Scholar
  96. 96.
    Cardoso S, Santos RX, Correia SC, Carvalho C, Santos MS, Baldeiras I, Oliveira CR, Moreira PI (2013) Insulin-induced recurrent hypoglycemia exacerbates diabetic brain mitochondrial dysfunction and oxidative imbalance. Neurobiol Dis 49:1–12.  https://doi.org/10.1016/j.nbd.2012.08.008 PubMedCrossRefGoogle Scholar
  97. 97.
    Dave KR, Tamariz J, Desai KM, Brand FJ, Liu A, Saul I, Bhattacharya SK, Pileggi A (2011) Recurrent hypoglycemia exacerbates cerebral ischemic damage in streptozotocin-induced diabetic rats. Stroke 42(5):1404–1411.  https://doi.org/10.1161/STROKEAHA.110.594937 PubMedCrossRefGoogle Scholar
  98. 98.
    McGowan JE, Chen L, Gao D, Trush M, Wei C (2006) Increased mitochondrial reactive oxygen species production in newborn brain during hypoglycemia. Neurosci Lett 399(1-2):111–114.  https://doi.org/10.1016/j.neulet.2006.01.034 PubMedCrossRefGoogle Scholar
  99. 99.
    Caprio S, Sacca L, Tamborlane WV, Sherwin RS (1988) Relationship between changes in glucose production and gluconeogenesis during mild hypoglycemia in humans. Metabolism 37(8):707–710PubMedCrossRefGoogle Scholar
  100. 100.
    Lecavalier L, Bolli G, Cryer P, Gerich J (1989) Contributions of gluconeogenesis and glycogenolysis during glucose counterregulation in normal humans. Am J Physiol 256(6 Pt 1):E844–E851PubMedGoogle Scholar
  101. 101.
    Castellino P, Luzi L, Simonson DC, Haymond M, DeFronzo RA (1987) Effect of insulin and plasma amino acid concentrations on leucine metabolism in man. Role of substrate availability on estimates of whole body protein synthesis. J Clin Invest 80(6):1784–1793.  https://doi.org/10.1172/JCI113272 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Fukagawa NK, Minaker KL, Rowe JW, Goodman MN, Matthews DE, Bier DM, Young VR (1985) Insulin-mediated reduction of whole body protein breakdown. Dose-response effects on leucine metabolism in postabsorptive men. J Clin Invest 76(6):2306–2311.  https://doi.org/10.1172/JCI112240 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Battezzati A, Simonson DC, Luzi L, Matthews DE (1998) Glucagon increases glutamine uptake without affecting glutamine release in humans. Metabolism 47(6):713–723PubMedCrossRefGoogle Scholar
  104. 104.
    Cherrington AD, Williams PE, Shulman GI, Lacy WW (1981) Differential time course of glucagon's effect on glycogenolysis and gluconeogenesis in the conscious dog. Diabetes 30(3):180–187PubMedCrossRefGoogle Scholar
  105. 105.
    Couet C, Fukagawa NK, Matthews DE, Bier DM, Young VR (1990) Plasma amino acid kinetics during acute states of glucagon deficiency and excess in healthy adults. Am J Physiol 258(1 Pt 1):E78–E85PubMedGoogle Scholar
  106. 106.
    Magnusson I, Rothman DL, Gerard DP, Katz LD, Shulman GI (1995) Contribution of hepatic glycogenolysis to glucose production in humans in response to a physiological increase in plasma glucagon concentration. Diabetes 44(2):185–189PubMedCrossRefGoogle Scholar
  107. 107.
    Pacy PJ, Cheng KN, Ford GC, Halliday D (1990) Influence of glucagon on protein and leucine metabolism: a study in fasting man with induced insulin resistance. Br J Surg 77(7):791–794PubMedCrossRefGoogle Scholar
  108. 108.
    Tessari P, Inchiostro S, Barazzoni R, Zanetti M, Vettore M, Biolo G, Iori E, Kiwanuka E et al (1996) Hyperglucagonemia stimulates phenylalanine oxidation in humans. Diabetes 45(4):463–470PubMedCrossRefGoogle Scholar
  109. 109.
    Darmaun D, Matthews DE, Bier DM (1988) Physiological hypercortisolemia increases proteolysis, glutamine, and alanine production. Am J Physiol 255(3 Pt 1):E366–E373PubMedGoogle Scholar
  110. 110.
    Fong YM, Albert JD, Tracey K, Hesse DG, Calvano S, Matthews DE, Lowry SF (1991) The influence of substrate background on the acute metabolic response to epinephrine and cortisol. J Trauma 31(11):1467–1476PubMedCrossRefGoogle Scholar
  111. 111.
    Gelfand RA, Matthews DE, Bier DM, Sherwin RS (1984) Role of counterregulatory hormones in the catabolic response to stress. J Clin Invest 74(6):2238–2248.  https://doi.org/10.1172/JCI111650 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Matthews DE, Pesola G, Campbell RG (1990) Effect of epinephrine on amino acid and energy metabolism in humans. Am J Physiol 258(6 Pt 1):E948–E956PubMedGoogle Scholar
  113. 113.
    Shamoon H, Jacob R, Sherwin RS (1980) Epinephrine-induced hypoaminoacidemia in normal and diabetic human subjects: effect of beta blockade. Diabetes 29(11):875–881PubMedCrossRefGoogle Scholar
  114. 114.
    Simmons PS, Miles JM, Gerich JE, Haymond MW (1984) Increased proteolysis. An effect of increases in plasma cortisol within the physiologic range. J Clin Invest 73(2):412–420.  https://doi.org/10.1172/JCI111227 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Hourani H, Williams P, Morris JA, May ME, Abumrad NN (1990) Effect of insulin-induced hypoglycemia on protein metabolism in vivo. Am J Physiol 259(3 Pt 1):E342–E350PubMedGoogle Scholar
  116. 116.
    Battezzati A, Benedini S, Fattorini A, Piceni Sereni L, Luzi L (2000) Effect of hypoglycemia on amino acid and protein metabolism in healthy humans. Diabetes 49(9):1543–1551PubMedCrossRefGoogle Scholar
  117. 117.
    De Feo P, Perriello G, Santeusanio F, Brunetti P, Bolli G, Haymond MW (1992) Differential effects of insulin-induced hypoglycaemia on the plasma branched-chain and non-branched-chain amino acid concentrations in humans. Diabete Metab 18(4):277–282PubMedGoogle Scholar
  118. 118.
    Flakoll PJ, Wentzel LS, Rice DE, Hill JO, Abumrad NN (1992) Short-term regulation of insulin-mediated glucose utilization in four-day fasted human volunteers: role of amino acid availability. Diabetologia 35(4):357–366PubMedCrossRefGoogle Scholar
  119. 119.
    Cardoso S, Carvalho C, Santos R, Correia S, Santos MS, Seica R, Oliveira CR, Moreira PI (2011) Impact of STZ-induced hyperglycemia and insulin-induced hypoglycemia in plasma amino acids and cortical synaptosomal neurotransmitters. Synapse 65(6):457–466.  https://doi.org/10.1002/syn.20863 PubMedCrossRefGoogle Scholar
  120. 120.
    Silverstein FS, Simpson J, Gordon KE (1990) Hypoglycemia alters striatal amino acid efflux in perinatal rats: an in vivo microdialysis study. Ann Neurol 28(4):516–521.  https://doi.org/10.1002/ana.410280408 PubMedCrossRefGoogle Scholar
  121. 121.
    Santos MS, Moreno AJ, Carvalho AP (1996) Relationships between ATP depletion, membrane potential, and the release of neurotransmitters in rat nerve terminals. An in vitro study under conditions that mimic anoxia, hypoglycemia, and ischemia. Stroke 27(5):941–950PubMedCrossRefGoogle Scholar
  122. 122.
    Uematsu D, Greenberg JH, Reivich M, Karp A (1989) Cytosolic free calcium, NAD/NADH redox state and hemodynamic changes in the cat cortex during severe hypoglycemia. J Cereb Blood Flow Metab 9(2):149–155.  https://doi.org/10.1038/jcbfm.1989.22 PubMedCrossRefGoogle Scholar
  123. 123.
    Syamsunarno MR, Iso T, Hanaoka H, Yamaguchi A, Obokata M, Koitabashi N, Goto K, Hishiki T et al (2013) A critical role of fatty acid binding protein 4 and 5 (FABP4/5) in the systemic response to fasting. PLoS One 8(11):e79386.  https://doi.org/10.1371/journal.pone.0079386 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Godfried MH, Romijn JA, Endert E, Sauerwein HP (1994) Metabolic effects of hypoglycemic counterregulation during sustained mild hyperinsulinemia and constant glucose availability in healthy men. Nutrition 10(1):5–10PubMedGoogle Scholar
  125. 125.
    Caprio S, Gelfand RA, Tamborlane WV, Sherwin RS (1989) Oxidative fuel metabolism during mild hypoglycemia: critical role of free fatty acids. Am J Physiol 256(3 Pt 1):E413–E419PubMedGoogle Scholar
  126. 126.
    Fanelli C, Calderone S, Epifano L, De Vincenzo A, Modarelli F, Pampanelli S, Perriello G, De Feo P et al (1993) Demonstration of a critical role for free fatty acids in mediating counterregulatory stimulation of gluconeogenesis and suppression of glucose utilization in humans. J Clin Invest 92(4):1617–1622.  https://doi.org/10.1172/JCI116746 PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Fanelli CG, De Feo P, Porcellati F, Perriello G, Torlone E, Santeusanio F, Brunetti P, Bolli GB (1992) Adrenergic mechanisms contribute to the late phase of hypoglycemic glucose counterregulation in humans by stimulating lipolysis. J Clin Invest 89(6):2005–2013.  https://doi.org/10.1172/JCI115809 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Lucidi P, Rossetti P, Porcellati F, Pampanelli S, Candeloro P, Andreoli AM, Perriello G, Bolli GB et al (2010) Mechanisms of insulin resistance after insulin-induced hypoglycemia in humans: the role of lipolysis. Diabetes 59(6):1349–1357.  https://doi.org/10.2337/db09-0745 PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Voss TS, Vendelbo MH, Kampmann U, Pedersen SB, Nielsen TS, Johannsen M, Svart MV, Jessen N et al (2017) Effects of insulin-induced hypoglycaemia on lipolysis rate, lipid oxidation and adipose tissue signalling in human volunteers: a randomised clinical study. Diabetologia 60(1):143–152.  https://doi.org/10.1007/s00125-016-4126-x PubMedCrossRefGoogle Scholar
  130. 130.
    Strosznajder J (1984) Effect of hypoglycemia on the brain free fatty acid level and the uptake of fatty acids by phospholipids. Neurochem Res 9(4):465–476PubMedCrossRefGoogle Scholar
  131. 131.
    Agardh CD, Kalimo H, Olsson Y, Siesjo BK (1981) Hypoglycemic brain injury: metabolic and structural findings in rat cerebellar cortex during profound insulin-induced hypoglycemia and in the recovery period following glucose administration. J Cereb Blood Flow Metab 1(1):71–84.  https://doi.org/10.1038/jcbfm.1981.8 PubMedCrossRefGoogle Scholar
  132. 132.
    Haber S, Lapidot A (2001) Energy fuel utilization by fetal versus young rabbit brain: a 13C MRS isotopomer analysis of [U-(13)C]glucose metabolites. Brain Res 896(1-2):102–117PubMedCrossRefGoogle Scholar
  133. 133.
    Lapidot A, Haber S (2000) Effect of acute insulin-induced hypoglycemia on fetal versus adult brain fuel utilization, assessed by (13)C MRS isotopomer analysis of [U-(13)C]glucose metabolites. Dev Neurosci 22(5-6):444–455.  https://doi.org/10.1159/000017474 PubMedCrossRefGoogle Scholar
  134. 134.
    Ennis K, Lusczek E, Rao R (2017) Characterization of the concurrent metabolic changes in brain and plasma during insulin-induced moderate hypoglycemia using (1)H NMR spectroscopy in juvenile rats. Neurosci Lett 653:370–375.  https://doi.org/10.1016/j.neulet.2017.06.016 PubMedCrossRefGoogle Scholar
  135. 135.
    Liu K, Ye XJ, Hu WY, Zhang GY, Bai GH, Zhao LC, He JW, Zhu H et al (2013) Neurochemical changes in the rat occipital cortex and hippocampus after repetitive and profound hypoglycemia during the neonatal period: an ex vivo (1)H magnetic resonance spectroscopy study. Mol Neurobiol 48(3):729–736.  https://doi.org/10.1007/s12035-013-8446-2 PubMedCrossRefGoogle Scholar
  136. 136.
    Languren G, Montiel T, Ramirez-Lugo L, Balderas I, Sanchez-Chavez G, Sotres-Bayon F, Bermudez-Rattoni F, Massieu L (2017) Recurrent moderate hypoglycemia exacerbates oxidative damage and neuronal death leading to cognitive dysfunction after the hypoglycemic coma. J Cereb Blood Flow Metab:271678X17733640.  https://doi.org/10.1177/0271678X17733640
  137. 137.
    De Feyter HM, Mason GF, Shulman GI, Rothman DL, Petersen KF (2013) Increased brain lactate concentrations without increased lactate oxidation during hypoglycemia in type 1 diabetic individuals. Diabetes 62(9):3075–3080.  https://doi.org/10.2337/db13-0313 PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    van Hall G, Stromstad M, Rasmussen P, Jans O, Zaar M, Gam C, Quistorff B, Secher NH et al (2009) Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab 29(6):1121–1129.  https://doi.org/10.1038/jcbfm.2009.35 PubMedCrossRefGoogle Scholar
  139. 139.
    Clarke DD, Sokoloff, L. (1994) Circulation and energy metabolism of brain. In: Siegel G, Agranoff, B., Albers, R.W., Molinoff, P. (ed) Basic Neurochemistry : Molecular, Cellular and Medical Aspects. 5th edn. Raven Press, New York, pp 645-680Google Scholar
  140. 140.
    Avogaro A, Nosadini R, Doria A, Tremolada C, Baccaglini U, Ambrosio F, Merkel C, Nosadini A et al (1990) Substrate availability other than glucose in the brain during euglycemia and insulin-induced hypoglycemia in dogs. Metabolism 39(1):46–50PubMedCrossRefGoogle Scholar
  141. 141.
    Maran A, Crepaldi C, Trupiani S, Lucca T, Jori E, Macdonald IA, Tiengo A, Avogaro A et al (2000) Brain function rescue effect of lactate following hypoglycaemia is not an adaptation process in both normal and type I diabetic subjects. Diabetologia 43(6):733–741.  https://doi.org/10.1007/s001250051371 PubMedCrossRefGoogle Scholar
  142. 142.
    Page KA, Williamson A, Yu N, McNay EC, Dzuira J, McCrimmon RJ, Sherwin RS (2009) Medium-chain fatty acids improve cognitive function in intensively treated type 1 diabetic patients and support in vitro synaptic transmission during acute hypoglycemia. Diabetes 58(5):1237–1244.  https://doi.org/10.2337/db08-1557 PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Veneman T, Mitrakou A, Mokan M, Cryer P, Gerich J (1994) Effect of hyperketonemia and hyperlacticacidemia on symptoms, cognitive dysfunction, and counterregulatory hormone responses during hypoglycemia in normal humans. Diabetes 43(11):1311–1317PubMedCrossRefGoogle Scholar
  144. 144.
    Mason GF, Petersen KF, Lebon V, Rothman DL, Shulman GI (2006) Increased brain monocarboxylic acid transport and utilization in type 1 diabetes. Diabetes 55(4):929–934PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Rao R, Ennis K, Long JD, Ugurbil K, Gruetter R, Tkac I (2010) Neurochemical changes in the developing rat hippocampus during prolonged hypoglycemia. J Neurochem 114(3):728–738.  https://doi.org/10.1111/j.1471-4159.2010.06797.x PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Gundersen V, Fonnum F, Ottersen OP, Storm-Mathisen J (2001) Redistribution of neuroactive amino acids in hippocampus and striatum during hypoglycemia: a quantitative immunogold study. J Cereb Blood Flow Metab 21(1):41–51.  https://doi.org/10.1097/00004647-200101000-00006 PubMedCrossRefGoogle Scholar
  147. 147.
    Kauppinen RA, Nicholls DG (1986) Synaptosomal bioenergetics. The role of glycolysis, pyruvate oxidation and responses to hypoglycaemia. Eur J Biochem 158(1):159–165PubMedCrossRefGoogle Scholar
  148. 148.
    Belik J, Wagerle LC, Stanley CA, Sacks LM, Herbert DW, Delivoria-Papadopoulos M (1989) Cerebral metabolic response and mitochondrial activity following insulin-induced hypoglycemia in newborn lambs. Biol Neonate 55(4-5):281–289.  https://doi.org/10.1159/000242930 PubMedCrossRefGoogle Scholar
  149. 149.
    Laffel L (1999) Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev 15(6):412–426PubMedCrossRefGoogle Scholar
  150. 150.
    Nehlig A (2004) Brain uptake and metabolism of ketone bodies in animal models. Prostaglandins Leukot Essent Fatty Acids 70(3):265–275.  https://doi.org/10.1016/j.plefa.2003.07.006 PubMedCrossRefGoogle Scholar
  151. 151.
    Cahill GF, Jr., Herrera MG, Morgan AP, Soeldner JS, Steinke J, Levy PL, Reichard GA, Jr., Kipnis DM (1966) Hormone-fuel interrelationships during fasting. J Clin Invest 45 (11):1751-1769.  https://doi.org/10.1172/JCI105481
  152. 152.
    Gjedde A, Crone C (1975) Induction processes in blood-brain transfer of ketone bodies during starvation. Am J Physiol 229(5):1165–1169PubMedGoogle Scholar
  153. 153.
    Hasselbalch SG, Knudsen GM, Jakobsen J, Hageman LP, Holm S, Paulson OB (1995) Blood-brain barrier permeability of glucose and ketone bodies during short-term starvation in humans. Am J Physiol 268(6 Pt 1):E1161–E1166PubMedGoogle Scholar
  154. 154.
    Hawkins RA, Williamson DH, Krebs HA (1971) Ketone-body utilization by adult and suckling rat brain in vivo. Biochem J 122(1):13–18PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Williamson DH, Bates MW, Krebs HA (1968) Activity and intracellular distribution of enzymes of ketone-body metabolism in rat liver. Biochem J 108(3):353–361PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Williamson DH, Bates MW, Page MA, Krebs HA (1971) Activities of enzymes involved in acetoacetate utilization in adult mammalian tissues. Biochem J 121(1):41–47PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Pan JW, de Graaf RA, Petersen KF, Shulman GI, Hetherington HP, Rothman DL (2002) [2,4-13 C2 ]-beta-Hydroxybutyrate metabolism in human brain. J Cereb Blood Flow Metab 22(7):890–898.  https://doi.org/10.1097/00004647-200207000-00014 PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Arakawa T, Goto T, Okada Y (1991) Effect of ketone body (D-3-hydroxybutyrate) on neural activity and energy metabolism in hippocampal slices of the adult guinea pig. Neurosci Lett 130(1):53–56PubMedCrossRefGoogle Scholar
  159. 159.
    Brooks KJ, Clark JB, Bates TE (1998) 3-Hydroxybutyrate aids the recovery of the energy state from aglycaemic hypoxia of adult but not neonatal rat brain slices. J Neurochem 70(5):1986–1990PubMedCrossRefGoogle Scholar
  160. 160.
    Wada H, Okada Y, Nabetani M, Nakamura H (1997) The effects of lactate and beta-hydroxybutyrate on the energy metabolism and neural activity of hippocampal slices from adult and immature rat. Brain Res Dev Brain Res 101(1-2):1–7PubMedCrossRefGoogle Scholar
  161. 161.
    Evans ML, Matyka K, Lomas J, Pernet A, Cranston IC, Macdonald I, Amiel SA (1998) Reduced counterregulation during hypoglycemia with raised circulating nonglucose lipid substrates: evidence for regional differences in metabolic capacity in the human brain? J Clin Endocrinol Metab 83(8):2952–2959.  https://doi.org/10.1210/jcem.83.8.4937 PubMedCrossRefGoogle Scholar
  162. 162.
    Haywood SC, Bree AJ, Puente EC, Daphna-Iken D, Fisher SJ (2009) Central but not systemic lipid infusion augments the counterregulatory response to hypoglycemia. Am J Physiol Endocrinol Metab 297(1):E50–E56.  https://doi.org/10.1152/ajpendo.90673.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Camberos-Luna L, Geronimo-Olvera C, Montiel T, Rincon-Heredia R, Massieu L (2016) The Ketone Body, beta-Hydroxybutyrate Stimulates the Autophagic Flux and Prevents Neuronal Death Induced by Glucose Deprivation in Cortical Cultured Neurons. Neurochem Res 41(3):600–609.  https://doi.org/10.1007/s11064-015-1700-4 PubMedCrossRefGoogle Scholar
  164. 164.
    Haces ML, Hernandez-Fonseca K, Medina-Campos ON, Montiel T, Pedraza-Chaverri J, Massieu L (2008) Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions. Exp Neurol 211(1):85–96.  https://doi.org/10.1016/j.expneurol.2007.12.029 PubMedCrossRefGoogle Scholar
  165. 165.
    Julio-Amilpas A, Montiel T, Soto-Tinoco E, Geronimo-Olvera C, Massieu L (2015) Protection of hypoglycemia-induced neuronal death by beta-hydroxybutyrate involves the preservation of energy levels and decreased production of reactive oxygen species. J Cereb Blood Flow Metab 35(5):851–860.  https://doi.org/10.1038/jcbfm.2015.1 PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Massieu L, Haces ML, Montiel T, Hernandez-Fonseca K (2003) Acetoacetate protects hippocampal neurons against glutamate-mediated neuronal damage during glycolysis inhibition. Neuroscience 120(2):365–378PubMedCrossRefGoogle Scholar
  167. 167.
    Mejia-Toiber J, Montiel T, Massieu L (2006) D-beta-hydroxybutyrate prevents glutamate-mediated lipoperoxidation and neuronal damage elicited during glycolysis inhibition in vivo. Neurochem Res 31(12):1399–1408.  https://doi.org/10.1007/s11064-006-9189-5 PubMedCrossRefGoogle Scholar
  168. 168.
    Yamada KA, Rensing N, Thio LL (2005) Ketogenic diet reduces hypoglycemia-induced neuronal death in young rats. Neurosci Lett 385(3):210–214.  https://doi.org/10.1016/j.neulet.2005.05.038 PubMedCrossRefGoogle Scholar
  169. 169.
    Oz G, Henry PG, Seaquist ER, Gruetter R (2003) Direct, noninvasive measurement of brain glycogen metabolism in humans. Neurochem Int 43(4-5):323–329PubMedCrossRefGoogle Scholar
  170. 170.
    Oz G, Seaquist ER, Kumar A, Criego AB, Benedict LE, Rao JP, Henry PG, Van De Moortele PF et al (2007) Human brain glycogen content and metabolism: implications on its role in brain energy metabolism. Am J Physiol Endocrinol Metab 292(3):E946–E951.  https://doi.org/10.1152/ajpendo.00424.2006 PubMedCrossRefGoogle Scholar
  171. 171.
    Brown AM, Baltan Tekkok S, Ransom BR (2004) Energy transfer from astrocytes to axons: the role of CNS glycogen. Neurochem Int 45(4):529–536.  https://doi.org/10.1016/j.neuint.2003.11.005 PubMedCrossRefGoogle Scholar
  172. 172.
    Cruz NF, Dienel GA (2002) High glycogen levels in brains of rats with minimal environmental stimuli: implications for metabolic contributions of working astrocytes. J Cereb Blood Flow Metab 22(12):1476–1489.  https://doi.org/10.1097/01.WCB.0000034362.37277.C0 PubMedCrossRefGoogle Scholar
  173. 173.
    Dienel GA, Ball KK, Cruz NF (2007) A glycogen phosphorylase inhibitor selectively enhances local rates of glucose utilization in brain during sensory stimulation of conscious rats: implications for glycogen turnover. J Neurochem 102(2):466–478.  https://doi.org/10.1111/j.1471-4159.2007.04595.x PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Morgenthaler FD, van Heeswijk RB, Xin L, Laus S, Frenkel H, Lei H, Gruetter R (2008) Non-invasive quantification of brain glycogen absolute concentration. J Neurochem 107(5):1414–1423PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Cataldo AM, Broadwell RD (1986) Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. II. Choroid plexus and ependymal epithelia, endothelia and pericytes. J Neurocytol 15(4):511–524PubMedCrossRefGoogle Scholar
  176. 176.
    Ibrahim MZ (1975) Glycogen and its related enzymes of metabolism in the central nervous system. Adv Anat Embryol Cell Biol 52(1):3–89PubMedGoogle Scholar
  177. 177.
    Pellegri G, Rossier C, Magistretti PJ, Martin JL (1996) Cloning, localization and induction of mouse brain glycogen synthase. Brain Res Mol Brain Res 38(2):191–199PubMedCrossRefGoogle Scholar
  178. 178.
    Choi IY, Seaquist ER, Gruetter R (2003) Effect of hypoglycemia on brain glycogen metabolism in vivo. J Neurosci Res 72(1):25–32.  https://doi.org/10.1002/jnr.10574 PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Oz G, Kumar A, Rao JP, Kodl CT, Chow L, Eberly LE, Seaquist ER (2009) Human brain glycogen metabolism during and after hypoglycemia. Diabetes 58(9):1978–1985.  https://doi.org/10.2337/db09-0226 PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Dringen R, Gebhardt R, Hamprecht B (1993) Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res 623(2):208–214PubMedCrossRefGoogle Scholar
  181. 181.
    Tekkok SB, Brown AM, Westenbroek R, Pellerin L, Ransom BR (2005) Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity. J Neurosci Res 81(5):644–652.  https://doi.org/10.1002/jnr.20573 PubMedCrossRefGoogle Scholar
  182. 182.
    Wender R, Brown AM, Fern R, Swanson RA, Farrell K, Ransom BR (2000) Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. J Neurosci 20(18):6804–6810PubMedCrossRefGoogle Scholar
  183. 183.
    Suh SW, Bergher JP, Anderson CM, Treadway JL, Fosgerau K, Swanson RA (2007) Astrocyte glycogen sustains neuronal activity during hypoglycemia: studies with the glycogen phosphorylase inhibitor CP-316,819 ([R-R*,S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl)pro pyl]-1H-indole-2-carboxamide). J Pharmacol Exp Ther 321(1):45–50.  https://doi.org/10.1124/jpet.106.115550 PubMedCrossRefGoogle Scholar
  184. 184.
    Duarte JMN, Morgenthaler FD, Gruetter R (2017) Glycogen Supercompensation in the Rat Brain After Acute Hypoglycemia is Independent of Glucose Levels During Recovery. Neurochem Res 42(6):1629–1635.  https://doi.org/10.1007/s11064-017-2178-z PubMedCrossRefGoogle Scholar
  185. 185.
    Herzog RI, Chan O, Yu S, Dziura J, McNay EC, Sherwin RS (2008) Effect of acute and recurrent hypoglycemia on changes in brain glycogen concentration. Endocrinology 149(4):1499–1504.  https://doi.org/10.1210/en.2007-1252 PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Oz G, DiNuzzo M, Kumar A, Moheet A, Khowaja A, Kubisiak K, Eberly LE, Seaquist ER (2017) Cerebral glycogen in humans following acute and recurrent hypoglycemia: Implications on a role in hypoglycemia unawareness. J Cereb Blood Flow Metab 37(8):2883–2893.  https://doi.org/10.1177/0271678X16678240 PubMedCrossRefGoogle Scholar
  187. 187.
    Suh SW, Aoyama K, Matsumori Y, Liu J, Swanson RA (2005) Pyruvate administered after severe hypoglycemia reduces neuronal death and cognitive impairment. Diabetes 54(5):1452–1458PubMedCrossRefGoogle Scholar
  188. 188.
    Zhou D, Qian J, Chang H, Xi B, Sun RP (2012) Pyruvate administered to newborn rats with insulin-induced hypoglycemic brain injury reduces neuronal death and cognitive impairment. Eur J Pediatr 171(1):103–109.  https://doi.org/10.1007/s00431-011-1489-3 PubMedCrossRefGoogle Scholar
  189. 189.
    Shetty PK, Sadgrove MP, Galeffi F, Turner DA (2012) Pyruvate incubation enhances glycogen stores and sustains neuronal function during subsequent glucose deprivation. Neurobiol Dis 45(1):177–187.  https://doi.org/10.1016/j.nbd.2011.08.002 PubMedCrossRefGoogle Scholar
  190. 190.
    Choi BY, Kim JH, Kim HJ, Yoo JH, Song HK, Sohn M, Won SJ, Suh SW (2013) Pyruvate administration reduces recurrent/moderate hypoglycemia-induced cortical neuron death in diabetic rats. PLoS One 8(11):e81523.  https://doi.org/10.1371/journal.pone.0081523 PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Behar KL, den Hollander JA, Petroff OA, Hetherington HP, Prichard JW, Shulman RG (1985) Effect of hypoglycemic encephalopathy upon amino acids, high-energy phosphates, and pHi in the rat brain in vivo: detection by sequential 1H and 31P NMR spectroscopy. J Neurochem 44(4):1045–1055PubMedCrossRefGoogle Scholar
  192. 192.
    Cerdan S, Kunnecke B, Seelig J (1990) Cerebral metabolism of [1,2-13C2]acetate as detected by in vivo and in vitro 13C NMR. J Biol Chem 265(22):12916–12926PubMedGoogle Scholar
  193. 193.
    Cruz F, Scott SR, Barroso I, Santisteban P, Cerdan S (1998) Ontogeny and cellular localization of the pyruvate recycling system in rat brain. J Neurochem 70(6):2613–2619PubMedCrossRefGoogle Scholar
  194. 194.
    Bakken IJ, White LR, Aasly J, Unsgard G, Sonnewald U (1997) Lactate formation from [U-13C]aspartate in cultured astrocytes: compartmentation of pyruvate metabolism. Neurosci Lett 237(2-3):117–120PubMedCrossRefGoogle Scholar
  195. 195.
    Chapa F, Cruz F, Garcia-Martin ML, Garcia-Espinosa MA, Cerdan S (2000) Metabolism of (1-(13)C) glucose and (2-(13)C, 2-(2)H(3)) acetate in the neuronal and glial compartments of the adult rat brain as detected by [(13)C, (2)H] NMR spectroscopy. Neurochem Int 37(2-3):217–228PubMedCrossRefGoogle Scholar
  196. 196.
    Hassel B, Sonnewald U (1995) Glial formation of pyruvate and lactate from TCA cycle intermediates: implications for the inactivation of transmitter amino acids? J Neurochem 65(5):2227–2234PubMedCrossRefGoogle Scholar
  197. 197.
    Olstad E, Olsen GM, Qu H, Sonnewald U (2007) Pyruvate recycling in cultured neurons from cerebellum. J Neurosci Res 85(15):3318–3325.  https://doi.org/10.1002/jnr.21208 PubMedCrossRefGoogle Scholar
  198. 198.
    Sonnewald U, Westergaard N, Jones P, Taylor A, Bachelard HS, Schousboe A (1996) Metabolism of [U-13C5] glutamine in cultured astrocytes studied by NMR spectroscopy: first evidence of astrocytic pyruvate recycling. J Neurochem 67(6):2566–2572PubMedCrossRefGoogle Scholar
  199. 199.
    Rink C, Gnyawali S, Stewart R, Teplitsky S, Harris H, Roy S, Sen CK, Khanna S (2017) Glutamate oxaloacetate transaminase enables anaplerotic refilling of TCA cycle intermediates in stroke-affected brain. FASEB J 31(4):1709–1718.  https://doi.org/10.1096/fj.201601033R PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Won SJ, Jang BG, Yoo BH, Sohn M, Lee MW, Choi BY, Kim JH, Song HK et al (2012) Prevention of acute/severe hypoglycemia-induced neuron death by lactate administration. J Cereb Blood Flow Metab 32(6):1086–1096.  https://doi.org/10.1038/jcbfm.2012.30 PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Hypertension in Diabetes Study (HDS): II. Increased risk of cardiovascular complications in hypertensive type 2 diabetic patients (1993). J Hypertens 11 (3):319-325Google Scholar
  202. 202.
    Abbatecola AM, Paolisso G, Sinclair AJ (2015) Treating diabetes mellitus in older and oldest old patients. Curr Pharm Des 21(13):1665–1671PubMedCrossRefGoogle Scholar
  203. 203.
    Alonso-Moran E, Orueta JF, Esteban JI, Axpe JM, Gonzalez ML, Polanco NT, Loiola PE, Gaztambide S et al (2015) Multimorbidity in people with type 2 diabetes in the Basque Country (Spain): Prevalence, comorbidity clusters and comparison with other chronic patients. Eur J Intern Med 26(3):197–202.  https://doi.org/10.1016/j.ejim.2015.02.005 PubMedCrossRefGoogle Scholar
  204. 204.
    Du Y, Heidemann C, Gosswald A, Schmich P, Scheidt-Nave C (2013) Prevalence and comorbidity of diabetes mellitus among non-institutionalized older adults in Germany - results of the national telephone health interview survey 'German Health Update (GEDA)' 2009. BMC Public Health 13:166.  https://doi.org/10.1186/1471-2458-13-166 PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Cao Z, Ye BD, Shen ZW, Cheng XF, Yang ZX, Liu YY, Wu RH, Geng K et al (2015) 2D-1H proton magnetic resonance spectroscopic imaging study on brain metabolite alterations in patients with diabetic hypertension. Mol Med Rep 11(6):4232–4238.  https://doi.org/10.3892/mmr.2015.3305 PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Duarte JM, Do KQ, Gruetter R (2014) Longitudinal neurochemical modifications in the aging mouse brain measured in vivo by 1H magnetic resonance spectroscopy. Neurobiol Aging 35(7):1660–1668.  https://doi.org/10.1016/j.neurobiolaging.2014.01.135 PubMedCrossRefGoogle Scholar
  207. 207.
    Ivanisevic J, Stauch KL, Petrascheck M, Benton HP, Epstein AA, Fang M, Gorantla S, Tran M et al (2016) Metabolic drift in the aging brain. Aging (Albany NY) 8(5):1000–1020.  https://doi.org/10.18632/aging.100961 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cerebral Vascular Disease Research LaboratoriesUniversity of Miami Miller School of MedicineMiamiUSA
  2. 2.Department of NeurologyUniversity of Miami Miller School of MedicineMiamiUSA
  3. 3.Neuroscience ProgramUniversity of Miami Miller School of MedicineMiamiUSA

Personalised recommendations