11β-HSD1 Inhibition by RL-118 Promotes Autophagy and Correlates with Reduced Oxidative Stress and Inflammation, Enhancing Cognitive Performance in SAMP8 Mouse Model

  • Dolors Puigoriol-Illamola
  • Christian Griñán-Ferré
  • Foteini Vasilopoulou
  • Rosana Leiva
  • Santiago Vázquez
  • Mercè Pallàs
Article
  • 48 Downloads

Abstract

Elevated glucocorticoid (GC) exposure is widely accepted as a key factor in the age-related cognitive decline in rodents and humans. 11β-HSD1 is a key enzyme in the GCs pathway, catalyzing the conversion of 11β-dehydrocorticosterone to corticosterone in mice, with possible implications in neurodegenerative processes and cognitive impairment. Here, we determined the effect of a new 11β-HSD1 inhibitor, RL-118, administered to 12-month-old senescence-accelerated mouse-prone 8 (SAMP8) mice with neuropathological AD-like hallmarks and widely used as a rodent model of cognitive dysfunction. Behavioral tests (open field and object location) and neurodegeneration molecular markers were studied. After RL-118 treatment, increased locomotor activity and cognitive performance were found. Likewise, we found changes in hippocampal autophagy markers such as Beclin1, LC3B, AMPKα, and mTOR, indicating a progression in the autophagy process. In line with autophagy increase, a diminution in phosphorylated tau species (Ser 396 and Ser 404) jointly with an increase in ADAM10 and sAPPα indicated that an improvement in removing the abnormal proteins by autophagy might be implicated in the neuroprotective role of the 11β-HSD1 inhibitor. In addition, gene expression of oxidative stress (OS) and inflammatory markers, such as Hmox1, Aldh2, Il-1β, and Ccl3, were reduced in old treated mice in comparison to that of the control group. Consistent with this, we further demonstrate a significant correlation with autophagy markers and cognitive improvement and significant inverse correlation with autophagy, OS, and neuroinflammation markers. We concluded that inhibition of 11β-HSD1 by RL-118 prevented neurodegenerative processes and cognitive decline, acting on autophagy process, being an additional neuroprotective mechanism not described previously.

Keywords

Behavior Learning Cognition Inflammation Hippocampus Oxidative stress Neurodegeneration APP Tau Aging 

Notes

Acknowledgments

We thank Maggie Brunner, M.A., for revising the language and style of the manuscript.

Author Contributions

Participated in research design: Puigoriol-Illamola, Griñan-Ferré., Pallàs.

Conducted experiments: Puigoriol-Illamola, Griñan-Ferré, Vasilopoulou, Leiva.

Contributed new reagents or analytic tools: Leiva, Vazquez.

Performed data analysis: Puigoriol-Illamola, Griñan-Ferré.

Wrote or contributed to the writing of the manuscript: Puigoriol-Illamola, Griñán-Ferré, Leiva, Vazquez, Pallàs

Supplementary material

12035_2018_1026_MOESM1_ESM.pdf (105 kb)
ESM 1 (PDF 105 kb)
12035_2018_1026_MOESM2_ESM.pdf (158 kb)
ESM 2 (PDF 158 kb)
12035_2018_1026_MOESM3_ESM.pdf (40 kb)
ESM 3 (PDF 40 kb)

References

  1. 1.
    López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Vílchez D, Saez I, Dillin A (2014) The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 5:5659CrossRefPubMedGoogle Scholar
  3. 3.
    Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15(7):713–720.  https://doi.org/10.1038/ncb2788 CrossRefPubMedGoogle Scholar
  4. 4.
    Levine B (2005) Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120:159–162PubMedGoogle Scholar
  5. 5.
    Son JH, Shim JH, Kim K-H, Ha J-Y, Han JY (2012) Neuronal autophagy and neurodegenerative diseases. Exp Mol Med 44(2):89–98CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yu WH, Kumar A, Peterhoff C, Shapiro Kulnane L, Uchiyama Y, Lamb BT, Cuervo AM, Nixon RA (2004) Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for beta-amyloid peptide over-production and localization in Alzheimer’s disease. Int J Biochem Cell Biol 36:2531–2540CrossRefPubMedGoogle Scholar
  7. 7.
    Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884CrossRefPubMedGoogle Scholar
  8. 8.
    Gella A, Durany N (2009) Oxidative stress in Alzheimer disease. Cell Adhes Migr 3(1):88–93CrossRefGoogle Scholar
  9. 9.
    Höhn A, Weber D, Jung T, Ott C, Hugo M, Kochlik B, Kehm R, König J et al (2016) Happily (n)ever after: aging in the context of oxidative stress, proteostasis loss and celular senescence. Redox Biol S2213-2317(16):30351–30352Google Scholar
  10. 10.
    Anderson RA, Qin B, Canini F, Poulet L, Roussel AM (2013) Cinnamon counteracts the negative effects of a high fat/high fructose diet on behavior, brain insulin signalling and Alzheimer-associated changes. PLoS One 8(12):e83243CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Casadesús G, Shukitt-Hale B, Joseph JA (2002) Qualitative versus quantitative caloric intake: are they equivalent paths to successful aging? Neurobiol Aging 23(5):747–769CrossRefPubMedGoogle Scholar
  12. 12.
    Ye SM, Johnson RW (1999) Increased interleukin-6 expression by microglia from brain of aged mice. J Neuroimmunol 93(1–2):139–148CrossRefPubMedGoogle Scholar
  13. 13.
    Terao A, Apte-Deshpande A, Dousman L, Morairty S, Eynon BP, Kilduff TS, Freund YR (2002) Immune response gene expression increases in the aging murine hippocampus. J Neuroimmunol 132(1–2):99–112CrossRefPubMedGoogle Scholar
  14. 14.
    Mathew R, Karp C, Beaudoin B, Vuong N, Chen G, Chen HY, Bray K, Reddy A et al (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137(6):1062–1075CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lara VP, Caramelli P, Teixeira AL, Barbosa MT, Carmona KC, Carvalho MG, Fernandes AP, Gomes KB (2013) High cortisol levels are associated with cognitive impairment no-dementia (CIND) and dementia. Clin Chim Acta 423:18–22CrossRefPubMedGoogle Scholar
  16. 16.
    De Quervain DJ, Poirier R, Wollmer MA, Grimaldi LM, Tsolaki M, Streffer JR, Hock C, Nitsch RM et al (2004) Glucocorticoid-related genetic susceptibility for Alzheimer’s disease. Hum Mol Genet 13(1):47–52CrossRefPubMedGoogle Scholar
  17. 17.
    Holmes MC, Carter RN, Noble J, Chitnis S, Dutia A, Paterson JM, Yau JLW (2010) 11β-Hydroxysteroid dehydrogenase type 1 expression is increased in the aged mouse hippocampus and parietal cortex and causes memory impairments. J Neurosci 30(20):6916–6920.  https://doi.org/10.1523/JNEUROSCI.0731-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yau JL, Noble J, Kenyon CJ, Hibberd C, Kotelevtsev Y, Mullins JJ, Seckl JR (2001) Lack of tissue glucocorticoid reactivation in 11β-hydroxysteroid dehydrogenase type 1 knockout mice ameliorates age-related learning impairments. Proc Natl Acad Sci U S A 98:4716–4721CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yau JL, McNair KM, Noble J, Brownstein D, Hibberd C, Morton N, Mullins JJ, Morris RG et al (2007) Enhanced hippocampal longterm potentiation and spatial learning in aged 11β-hydroxysteroid dehydrogenase type 1 knock-out mice. J Neurosci 27:10487–10496CrossRefPubMedGoogle Scholar
  20. 20.
    Mohler EG, Browman KE, Roderwald VA, Cronin EA, Markosyan S, Scott Bitner R, Strakhova MI, Drescher KU et al (2011) Acute inhibition of 11β hydroxysteroid dehydrogenase type-1 improves memory in rodent models of cognition. J Neurosci 31(14):5406–5413CrossRefPubMedGoogle Scholar
  21. 21.
    Leiva R, Griñán-Ferré C, Seira C, Valverde E, McBride A, Binnie M, Pérez B, Luque FJ et al (2017) Design, synthesis and in vivo study of novel pyrrolidine-based 11β-HSD1 inhibitors for age-related cognitive dysfunction. Eur J Med Chem 139:412–428.  https://doi.org/10.1016/j.ejmech.2017.08.003 CrossRefPubMedGoogle Scholar
  22. 22.
    Nomura Y, Okuma Y (1999) Age-related defects in lifespan and learning ability in SAMP8 mice. Neurobiol Aging 20(2):111–115CrossRefPubMedGoogle Scholar
  23. 23.
    Pallàs M, Camins A, Smith MA, Perry G, Lee HG, Casadesus G (2008) From aging to Alzheimer’s disease: unveiling “the switch” with the senescence-accelerated mouse model (SAMP8). J Alzheimers Dis 15(4):615–624CrossRefPubMedGoogle Scholar
  24. 24.
    Morley JE, Farr SA, Kumar VB, Armbrecht HJ (2012) The SAMP8 mouse: a model to develop therapeutic interventions for Alzheimer’s disease. Curr Pharm 18(8):1123–1130CrossRefGoogle Scholar
  25. 25.
    Murai T, Okuda S, Tanaka T, Ohta H (2007) Characteristics of object location memory in mice: behavioral and pharmacological studies. Physiol Behav 90:116–124CrossRefPubMedGoogle Scholar
  26. 26.
    Griñán C, Palomera-Ávalos V, Puigoriol-Illamola D, Camins A, Porquet D, Plá V, Aguado F, Pallàs M (2016) Behavior and cognitive changes correlated with hippocampal neuroinflammaging and neuronal markers in female SAMP8, a model of accelerated senescence. Exp Gerontol 80:57–69CrossRefGoogle Scholar
  27. 27.
    Sooy K, Webster SP, Noble J, Binnie M, Walker BR, Seckl JR, Yau JLW (2010) Partial deficiency or short-term inhibition of 11β-hydroxysteroid dehydrogenase type 1 improves cognitive function in ageing mice. J Neurosci 30(41):13867–13872.  https://doi.org/10.1523/JNEUROSCI.2783-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mah L, Binns MA, Steffens DC, Alzheimer’s Disease Neuroimaging Initiative (2015) Anxiety symptoms in amnestic mild cognitive impairment are associated with medial temporal atrophy and predict conversion to Alzheimer disease. Am J Geriatr Psychiatry 23:466–476.  https://doi.org/10.1016/j.jagp.2014.10.005 CrossRefPubMedGoogle Scholar
  29. 29.
    Ramakers IHGB, Verhey FRJ, Scheltens P, Hampel H, Soininen H, Aalten P, Rikkert MO, Verbeek MM et al (2013) Anxiety is related to Alzheimer cerebrospinal fluid markers in subjects with mild cognitive impairment. Psychol Med 43:911–920.  https://doi.org/10.1017/S0033291712001870 CrossRefPubMedGoogle Scholar
  30. 30.
    Harr MW, Distelhorst CW (2010) Apoptosis and autophagy: decoding calcium signals that mediate life or death. Cold Spring Harb Perspect Biol 2(10):a005579CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    El Zaoui I, Behar-Cohen F, Torriglia A (2015) Glucocorticoids exert direct toxicity on microvasculature: analysis of cell death mechanisms. Toxicol Sci 143(2):441–453CrossRefPubMedGoogle Scholar
  32. 32.
    Triplett JC, Tramutola A, Swomley A, Kirk J, Grimes K, Lewis K, Orr M, Rodriguez K et al (2015) Age-related changes in the proteostasis network in the brain of the naked mole-rat: implications promoting healthy longevity. Biochim Biophys Acta 1852:2213–2224CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Maiese K (2016) Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 82(5):1245–1266CrossRefPubMedGoogle Scholar
  34. 34.
    Guo H, Chen Y, Liao L, Wu W (2013) Resveratrol protects HUVECs from oxidized-LDL induced oxidative damage by autophagy upregulation via the AMPK7SIRT1 pathway. Cardiovasc Drugs Ther 27:189–198CrossRefPubMedGoogle Scholar
  35. 35.
    Rahman MA, Rhim H (2017) Therapeutic implication of autophagy in neurodegenerative diseases. BMB Rep 50(7):345–354CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Koyuncu S, Fatima A, Gutierrez-Garcia R, Vilchez D (2017) Proteostasis of huntingtin in health and disease. Int J Mol Sci 18(7):1568CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Funderburk SF, Marcellino BK, Yue Z (2010) Cell “self-eating” (autophagy) mechanism in Alzheimer’s disease. Mt Sinai J Med 77(1):59–68.  https://doi.org/10.1002/msj.20161 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Caballero B, Coto-Montes A (2012) An insight into the role of autophagy in cell responses in the aging and neurodegenerative brain. Histol Histopathol 27(3):263–275PubMedGoogle Scholar
  39. 39.
    Friedman LG, Qureshi YH, Yu WH (2015) Promoting autophagic clearance: viable therapeutic targets in Alzheimer’s disease. Neurotherapeutics 12(1):94–108.  https://doi.org/10.1007/s13311-014-0320-z CrossRefPubMedGoogle Scholar
  40. 40.
    Wirawan E, Lippens S, Vanden Berghe T, Romagnoli A, Fimia GM, Piacentini M, Vandenabeele P (2012) Beclin 1: a role in membrane dynamics and beyond. Autophagy 8(1):6–17CrossRefPubMedGoogle Scholar
  41. 41.
    Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18(4):571–580CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Rusten TE, Stenmark H (2010) p62, an autophagy hero or culprit? Nat Cell Biol 12(3):207–209CrossRefPubMedGoogle Scholar
  43. 43.
    Tanida I, Ueno T, Kominami E (2008) LC3 and autophagy. Methods Mol Biol 445:77–88CrossRefPubMedGoogle Scholar
  44. 44.
    Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4(2):151–175CrossRefPubMedGoogle Scholar
  45. 45.
    Ginaldi L, De Martinis M, D’Ostilio A, Marini L, Loreto F, Modesti M, Quaglino D (2001) Changes in the expression of surface receptors on lymphocyte subsets in the elderly: quantitative flow cytometric analysis. Am J Hematol 67(2):63–72CrossRefPubMedGoogle Scholar
  46. 46.
    Williams AD, Brown BE, Putchim L, Sweet MJ (2015) Age-related shifts in bacterial diversity in a reef coral. PLoS One 10(12):e0144902CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Secció de Farmacologia i Toxicologia and Institut de Neurociències, Facultat de Farmàcia i Ciències de l’AlimentacióUniversitat de BarcelonaBarcelonaSpain
  2. 2.Laboratori de Química Farmacèutica (Unitat Associada al CSIC), and Institute of Biomedicine (IBUB), Facultat de Farmàcia i Ciències de l’AlimentacióUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations