m-Trifluoromethyl-diphenyl Diselenide Regulates Prefrontal Cortical MOR and KOR Protein Levels and Abolishes the Phenotype Induced by Repeated Forced Swim Stress in Mice

  • Suzan Gonçalves Rosa
  • Ana Paula Pesarico
  • Franciele Martini
  • Cristina Wayne Nogueira


The present study aimed to investigate the m-trifluoromethyl-diphenyl diselenide [(m-CF3-PhSe)2] effects on prefrontal cortical MOR and KOR protein levels and phenotype induced by repeated forced swim stress (FSS) in mice. Adult Swiss mice were subjected to repeated FSS sessions, and after that, they performed the spontaneous locomotor/exploratory activity, tail suspension, and splash tests. (m-CF3-PhSe)2 (0.1 to 5 mg/kg) was administered to mice 30 min before the first FSS session and 30 min before the subsequent repeated FSS. (m-CF3-PhSe)2 abolished the phenotype induced by repeated FSS in mice. In addition, a single FSS session increased μ but reduced δ-opioid receptor contents, without changing the κ content. Mice subjected to repeated FSS had an increase in the μ content when compared to those of naïve group or subjected to single FSS. Repeated FSS induced an increase of δ-opioid receptor content compared to those mice subjected to single FSS. However, the δ-opioid receptor contents were lower than those found in the naïve group. The mice subjected to repeated FSS showed an increase in the κ-opioid receptor content when compared to that of the naïve mice. (m-CF3-PhSe)2 regulated the protein contents of μ and κ receptors in mice subjected to repeated FSS. These findings demonstrate that (m-CF3-PhSe)2 was effective to abolish the phenotype induced by FSS, which was accompanied by changes in the contents of cortical μ- and κ-opioid receptors.


Depression Stress Opioid receptors Organoselenium 


Funding Information

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq (441405/2014-2) for the financial support. C.W.N. is recipient of CNPq fellowship.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Atwoli L, Stein DJ, Koenen KC, McLaughlin KA (2015) Epidemiology of posttraumatic stress disorder: prevalence, correlates and consequences. Curr Opin Psychiatry 28(4):307–311. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Koolhaas JM, de Boer SF, Coppens CM, Buwalda B (2010) Neuroendocrinology of coping styles: towards understanding the biology of individual variation. Front Neuroendocrinol 31(3):307–321. CrossRefPubMedGoogle Scholar
  3. 3.
    Binder EB, Nemeroff CB (2010) The CRF system, stress, depression and anxiety—insights from human genetic studies. Nature Publishing Group,Google Scholar
  4. 4.
  5. 5.
    Bali A, Randhawa PK, Jaggi AS (2015) Stress and opioids: role of opioids in modulating stress-related behavior and effect of stress on morphine conditioned place preference. Neurosci Biobehav Rev 51:138–150. CrossRefPubMedGoogle Scholar
  6. 6.
    Nummenmaa L, Tuominen L (2017) Opioid system and human emotions. Br J Pharmacol.
  7. 7.
    Zalsman G, Molcho A, Huang Y, Dwork A, Li S, Mann JJ (2005) Postmortem mu-opioid receptor binding in suicide victims and controls. J Neural Transm (Vienna) 112(7):949–954. CrossRefGoogle Scholar
  8. 8.
    Nogueira CW, Rocha JB (2011) Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol 85(11):1313–1359. CrossRefPubMedGoogle Scholar
  9. 9.
    Ibrahim M, Muhammad N, Naeem M, Deobald AM, Kamdem JP, Rocha JB (2015) In vitro evaluation of glutathione peroxidase (GPx)-like activity and antioxidant properties of an organoselenium compound. Toxicol in Vitro 29(5):947–952. CrossRefPubMedGoogle Scholar
  10. 10.
    Oliveira CE, Marcondes Sari MH, Zborowski VA, Prado VC, Nogueira CW, Zeni G (2016) Pain-depression dyad induced by reserpine is relieved by p,p′-methoxyl-diphenyl diselenide in rats. Eur J Pharmacol 791:794–802. CrossRefPubMedGoogle Scholar
  11. 11.
    Quines CB, Rosa SG, Velasquez D, Da Rocha JT, Neto JS, Nogueira CW (2016) Diphenyl diselenide elicits antidepressant-like activity in rats exposed to monosodium glutamate: a contribution of serotonin uptake and Na(+), K(+)-ATPase activity. Behav Brain Res 301:161–167. CrossRefPubMedGoogle Scholar
  12. 12.
    Bruning CA, Martini F, Soares SM, Savegnago L, Sampaio TB, Nogueira CW (2015) Depressive-like behavior induced by tumor necrosis factor-alpha is attenuated by m-trifluoromethyl-diphenyl diselenide in mice. J Psychiatr Res 66-67:75–83. CrossRefPubMedGoogle Scholar
  13. 13.
    Savegnago L, Jesse CR, Nogueira CW (2009) Structural modifications into diphenyl diselenide molecule do not cause toxicity in mice. Environ Toxicol Pharmacol 27(2):271–276. CrossRefPubMedGoogle Scholar
  14. 14.
    Bruning CA, Martini F, Soares SM, Sampaio TB, Gai BM, Duarte MM, Nogueira CW (2015) m-Trifluoromethyl-diphenyl diselenide, a multi-target selenium compound, prevented mechanical allodynia and depressive-like behavior in a mouse comorbid pain and depression model. Prog Neuro-Psychopharmacol Biol Psychiatry 63:35–46. CrossRefGoogle Scholar
  15. 15.
    Bruning CA, Souza AC, Gai BM, Zeni G, Nogueira CW (2011) Antidepressant-like effect of m-trifluoromethyl-diphenyl diselenide in the mouse forced swimming test involves opioid and serotonergic systems. Eur J Pharmacol 658(2–3):145–149. CrossRefPubMedGoogle Scholar
  16. 16.
    Rosa SG, Pesarico AP, Tagliapietra CF, da Luz SCA, Nogueira CW (2017) Opioid system contribution to the antidepressant-like action of m-trifluoromethyl-diphenyl diselenide in mice: a compound devoid of tolerance and withdrawal syndrome. J Psychopharmacol 31:1250–1262. CrossRefPubMedGoogle Scholar
  17. 17.
    Paulmier C (1986) Selenoorganic functional groups. In: Paulmier C (ed) Selenium reagents and intermediates in organic synthesis, 1st edn. Prgamon Press, Oxford, pp. 25–51Google Scholar
  18. 18.
    Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice—primary screening-test for antidepressants. Arch Int Pharmacod T 229(2):327–336Google Scholar
  19. 19.
    Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85(3):367–370CrossRefPubMedGoogle Scholar
  20. 20.
    Isingrini E, Camus V, Le Guisquet AM, Pingaud M, Devers S, Belzung C (2010) Association between repeated unpredictable chronic mild stress (UCMS) procedures with a high fat diet: a model of fluoxetine resistance in mice. PLoS One 5(4):e10404. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    York JM, Blevins NA, McNeil LK, Freund GG (2013) Mouse short- and long-term locomotor activity analyzed by video tracking software. J Vis Exp (76). doi:
  22. 22.
    Knoll AT, Carlezon WA Jr (2010) Dynorphin, stress, and depression. Brain Res 1314:56–73. CrossRefPubMedGoogle Scholar
  23. 23.
    Rogoz Z, Kabzinski M, Sadaj W, Rachwalska P, Gadek-Michalska A (2012) Effect of co-treatment with fluoxetine or mirtazapine and risperidone on the active behaviors and plasma corticosterone concentration in rats subjected to the forced swim test. Pharmacol Rep 64(6):1391–1399CrossRefPubMedGoogle Scholar
  24. 24.
    Rosa SG, Pesarico AP, Nogueira CW (2018) m-Trifluoromethyl-diphenyl diselenide promotes resilience to social avoidance induced by social defeat stress in mice: contribution of opioid receptors and MAPKs. Prog Neuro-Psychopharmacol Biol Psychiatry 82:123–135. CrossRefGoogle Scholar
  25. 25.
    Bodnar RJ (2017) Endogenous opiates and behavior: 2015. Peptides 88:126–188. CrossRefPubMedGoogle Scholar
  26. 26.
    McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87(3):873–904. CrossRefPubMedGoogle Scholar
  27. 27.
    Berrocoso E, Ikeda K, Sora I, Uhl GR, Sanchez-Blazquez P, Mico JA (2013) Active behaviours produced by antidepressants and opioids in the mouse tail suspension test. Int J Neuropsychopharmacol 16(1):151–162. CrossRefPubMedGoogle Scholar
  28. 28.
    Rojas-Corrales MO, Berrocoso E, Gibert-Rahola J, Mico JA (2002) Antidepressant-like effects of tramadol and other central analgesics with activity on monoamines reuptake, in helpless rats. Life Sci 72(2):143–152CrossRefPubMedGoogle Scholar
  29. 29.
    Tejedor-Real P, Mico JA, Maldonado R, Roques BP, Gibert-Rahola J (1995) Implication of endogenous opioid system in the learned helplessness model of depression. Pharmacol Biochem Behav 52(1):145–152CrossRefPubMedGoogle Scholar
  30. 30.
    Filliol D, Ghozland S, Chluba J, Martin M, Matthes HW, Simonin F, Befort K, Gaveriaux-Ruff C et al (2000) Mice deficient for delta- and mu-opioid receptors exhibit opposing alterations of emotional responses. Nat Genet 25(2):195–200. CrossRefPubMedGoogle Scholar
  31. 31.
    Yoo JH, Lee SY, Loh HH, Ho IK, Jang CG (2004) Altered emotional behaviors and the expression of 5-HT1A and M1 muscarinic receptors in micro-opioid receptor knockout mice. Synapse 54(2):72–82. CrossRefPubMedGoogle Scholar
  32. 32.
    Komatsu H, Ohara A, Sasaki K, Abe H, Hattori H, Hall FS, Uhl GR, Sora I (2011) Decreased response to social defeat stress in mu-opioid-receptor knockout mice. Pharmacol Biochem Behav 99(4):676–682. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nikulina EM, Hammer RP Jr, Miczek KA, Kream RM (1999) Social defeat stress increases expression of mu-opioid receptor mRNA in rat ventral tegmental area. Neuroreport 10(14):3015–3019CrossRefPubMedGoogle Scholar
  34. 34.
    Yamamoto M, Komori T, Matsumoto T, Zhang K, Miyahara S, Shizuya K, Okazaki Y (2003) Effects of single and repeated prolonged stress on mu-opioid receptor mRNA expression in rat gross hypothalamic and midbrain homogenates. Brain Res 980(2):191–196CrossRefPubMedGoogle Scholar
  35. 35.
    Lutz PE, Kieffer BL (2013) Opioid receptors: distinct roles in mood disorders. Trends Neurosci 36(3):195–206. CrossRefPubMedGoogle Scholar
  36. 36.
    Van Loon GR, Pierzchala K, Houdi AA, Kvetnansky R, Zeman P (1990) Tolerance and cross-tolerance to stress-induced increases in plasma met-enkephalin in rats with adaptively increased resting secretion. Endocrinology 126(4):2196–2204. CrossRefPubMedGoogle Scholar
  37. 37.
    Bruchas MR, Xu M, Chavkin C (2008) Repeated swim stress induces kappa opioid-mediated activation of extracellular signal-regulated kinase 1/2. Neuroreport 19(14):1417–1422. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    McLaughlin JP, Li S, Valdez J, Chavkin TA, Chavkin C (2006) Social defeat stress-induced behavioral responses are mediated by the endogenous kappa opioid system. Neuropsychopharmacology 31(6):1241–1248. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    McLaughlin JP, Marton-Popovici M, Chavkin C (2003) Kappa opioid receptor antagonism and prodynorphin gene disruption block stress-induced behavioral responses. J Neurosci 23(13):5674–5683PubMedPubMedCentralGoogle Scholar
  40. 40.
    Wang Q, Long Y, Hang A, Zan GY, Shu XH, Wang YJ, Liu JG (2016) The anxiolytic- and antidepressant-like effects of ATPM-ET, a novel kappa agonist and mu partial agonist, in mice. Psychopharmacology 233(12):2411–2418. CrossRefPubMedGoogle Scholar
  41. 41.
    Richards EM, Mathews DC, Luckenbaugh DA, Ionescu DF, Machado-Vieira R, Niciu MJ, Duncan WC, Nolan NM et al (2016) A randomized, placebo-controlled pilot trial of the delta opioid receptor agonist AZD2327 in anxious depression. Psychopharmacology 233(6):1119–1130. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Saitoh A, Sugiyama A, Nemoto T, Fujii H, Wada K, Oka J, Nagase H, Yamada M (2011) The novel delta opioid receptor agonist KNT-127 produces antidepressant-like and antinociceptive effects in mice without producing convulsions. Behav Brain Res 223(2):271–279. CrossRefPubMedGoogle Scholar
  43. 43.
    Yamada K, Nabeshima T (1995) Stress-induced behavioral responses and multiple opioid systems in the brain. Behav Brain Res 67(2):133–145CrossRefPubMedGoogle Scholar
  44. 44.
    Haj-Mirzaian A, Kordjazy N, Ostadhadi S, Amiri S, Dehpour A (2016) Fluoxetine reverses the behavioral despair induced by neurogenic stress in mice: role of N-methyl-d-aspartate and opioid receptors. Can J Physiol Pharmacol 94(6):599–612. CrossRefPubMedGoogle Scholar
  45. 45.
    Berrocoso E, Mico JA (2009) Cooperative opioid and serotonergic mechanisms generate superior antidepressant-like effects in a mice model of depression. Int J Neuropsychopharmacol 12(8):1033–1044. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Suzan Gonçalves Rosa
    • 1
  • Ana Paula Pesarico
    • 1
  • Franciele Martini
    • 1
  • Cristina Wayne Nogueira
    • 1
  1. 1.Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e ExatasUniversidade Federal de Santa MariaSanta MariaBrazil

Personalised recommendations