The Compensatory Immune-Regulatory Reflex System (CIRS) in Depression and Bipolar Disorder

Article
  • 92 Downloads

Abstract

Here, we review a novel concept namely the compensatory immune-regulatory reflex system (CIRS) as applied to the pathophysiology of major depressive disorder (MDD) and bipolar disorder (BD). There is evidence that a substantial subset of individuals with MDD and BD exhibit an activation of the immune-inflammatory response system (IRS), as indicated by an increased production of macrophagic M1 and T helper (Th)-1 pro-inflammatory cytokines, interleukin (IL)-6 trans-signaling, positive acute phase proteins (APPs), and complement factors. These immune aberrations appear to be evident during the course of major affective episodes of either depressive or (hypo) manic polarity. Here, we review (a) the current state of the art of CIRS functions in both mood disorders and (b) the possible role of CIRS-related biomarkers for the understanding of affective disorders within the framework of precision psychiatry that could also provide novel drug targets for both MDD and BD. CIRS-related abnormalities in mood disorders include elevated Th-2 and T regulatory (Treg) activities with increased IL-4 and IL-10 production, classical IL-6 signaling, increased levels of sIL-1R antagonist (sIL-1RA), soluble IL-2 (sIL-2R) and tumor necrosis factor–α- receptors, and positive APPs, including haptoglobin, hemopexin, α1-acid glycoprotein, α1-antitrypsin, and ceruloplasmin. It is concluded that CIRS is involved in MDD and BD by regulating the primary immune-inflammatory response, thereby contributing to spontaneous and antidepressant-promoted recovery from the acute phase of illness. Signs of activated IRS and CIRS pathways are observed in the remitted phases of both disorders indicating that there is no return to the original homeostasis after an acute episode, while later episodes of mood disorders are characterized by sensitized IRS and CIRS responses. New z-unit weighted composite biomarker scores are proposed, which reflect different aspects of IRS versus CIRS activation and may be used to estimate different IRS/CIRS activity ratios in mood and other neuroimmune disorders.

Keywords

Major depression Bipolar disorder Inflammation Neuroimmune Cytokines Oxidative and nitrosative stress 

References

  1. 1.
    Schleifer SJ, Keller SE, Meyerson AT, Raskin MJ, Davis KL, Stein M (1984) Lymphocyte function in major depressive disorder. Arch Gen Psychiatry 41(5):484–486PubMedCrossRefGoogle Scholar
  2. 2.
    Irwin M, Gillin JC (1987) Impaired natural killer cell activity among depressed patients. Psychiatry Res 20(2):181–182PubMedCrossRefGoogle Scholar
  3. 3.
    Roitt IM, Brostoff J, Male DK (1985) In: Immunology. Gower Medical Publishing, New YorkGoogle Scholar
  4. 4.
    Maes M, Bosmans E, Suy E, Minner B, Raus J (1989) Impaired lymphocyte stimulation by mitogens in severely depressed patients. A complex interface with HPA-axis hyperfunction, noradrenergic activity and the ageing process. Br J Psychiatry 155:793–798PubMedCrossRefGoogle Scholar
  5. 5.
    Maes M, Bosmans E, Suy E, Vandervorst C, DeJonckheere C, Raus J (1991) Depression-related disturbances in mitogen-induced lymphocyte responses and interleukin-1 beta and soluble interleukin-2 receptor production. Acta Psychiatr Scand 84(4):379–386PubMedCrossRefGoogle Scholar
  6. 6.
    Maes M, Lin A, Kenis G, Egyed B, Bosmans E (2000) The effects of noradrenaline and alpha-2 adrenoceptor agents on the production of monocytic products. Psychiatry Res 96(3):245–253PubMedCrossRefGoogle Scholar
  7. 7.
    Maes M, Bosmans E, Suy E, Vandervorst C, De Jonckheere C, Raus J (1990) Immune disturbances during major depression: Upregulated expression of interleukin-2 receptors. Neuropsychobiology 24(3):115–120PubMedCrossRefGoogle Scholar
  8. 8.
    Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550PubMedCrossRefGoogle Scholar
  9. 9.
    Spulber S, Bartfai T, Schultzberg M (2009) IL-1/IL-1ra balance in the brain revisited - evidence from transgenic mouse models. Brain Behav Immun 23(5):573–579PubMedCrossRefGoogle Scholar
  10. 10.
    Rubin LA, Kurman CC, Fritz ME, Biddison WE, Boutin B, Yarchoan R, Nelson DL (1985) Soluble interleukin 2 receptors are released from activated human lymphoid cells in vitro. J Immunol 135(5):3172–3177PubMedGoogle Scholar
  11. 11.
    Rubin LA, Nelson DL (1990) The soluble interleukin-2 receptor: Biology, function, and clinical application. Ann Intern Med 113(8):619–627PubMedCrossRefGoogle Scholar
  12. 12.
    Claman HN (1972) Corticosteroids and lymphoid cells. N Engl J Med 287(8):388–397PubMedCrossRefGoogle Scholar
  13. 13.
    Ranelletti FO, Musiani P, Maggiano N, Lauriola L, Piantelli M (1983) Modulation of glucocorticoid inhibitory action on human lymphocyte mitogenesis: Dependence on mitogen concentration and T-cell maturity. Cell Immunol 76(1):22–28PubMedCrossRefGoogle Scholar
  14. 14.
    Bloemena E, van Oers MH, Weinreich S, Yong SL, Schellekens PT (1988) Prednisolone and cyclosporin a exert differential inhibitory effects on T-cell proliferation in vitro. Clin Immunol Immunopathol 48(3):380–391PubMedCrossRefGoogle Scholar
  15. 15.
    Maes M (1995) Evidence for an immune response in major depression: A review and hypothesis. Prog Neuro-Psychopharmacol Biol Psychiatry 19(1):11–38CrossRefGoogle Scholar
  16. 16.
    Maes M, Meltzer HY, Bosmans E, Bergmans R, Vandoolaeghe E, Ranjan R, Desnyder R (1995) Increased plasma concentrations of interleukin-6, soluble interleukin-6, soluble interleukin-2 and transferrin receptor in major depression. J Affect Disord 34(4):301–309PubMedCrossRefGoogle Scholar
  17. 17.
    Maes M, Bosmans E, Calabrese J, Smith R, Meltzer HY (1995) Interleukin-2 and interleukin-6 in schizophrenia and mania: Effects of neuroleptics and mood stabilizers. J Psychiatr Res 29(2):141–152PubMedCrossRefGoogle Scholar
  18. 18.
    Mikova O, Yakimova R, Bosmans E, Kenis G, Maes M (2001) Increased serum tumor necrosis factor alpha concentrations in major depression and multiple sclerosis. Eur Neuropsychopharmacol 11(3):203–208PubMedCrossRefGoogle Scholar
  19. 19.
    Howren MB, Lamkin DM, Suls J (2009) Associations of depression with C-reactive protein, IL-1, and IL-6: A meta-analysis. Psychosom Med 71(2):171–186PubMedCrossRefGoogle Scholar
  20. 20.
    Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctôt KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67(5):446–457PubMedCrossRefGoogle Scholar
  21. 21.
    Liu Y, Ho RC, Mak A (2012) Interleukin (IL)-6, tumour necrosis factor alpha (TNF-α) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: A meta-analysis and meta-regression. J Affect Disord 139(3):230–239PubMedCrossRefGoogle Scholar
  22. 22.
    Hiles SA, Baker AL, de Malmanche T, Attia J (2012) Interleukin-6, C-reactive protein and interleukin-10 after antidepressant treatment in people with depression: A meta-analysis. Psychol Med 42(10):2015–2026PubMedCrossRefGoogle Scholar
  23. 23.
    Valkanova V, Ebmeier KP, Allan CL (2013) CRP, IL-6 and depression: A systematic review and meta-analysis of longitudinal studies. J Affect Disord 150(3):736–744PubMedCrossRefGoogle Scholar
  24. 24.
    Haapakoski R, Mathieu J, Ebmeier KP, Alenius H, Kivimäki M (2015) Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav Immun 49:206–215PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Köhler CA, Freitas TH, Stubbs B, Maes M, Solmi M, Veronese N, de Andrade NQ, Morris G, Fernandes BS, Brunoni AR, Herrmann N, Raison CL, Miller BJ, Lanctôt KL, Carvalho AF (2017) Peripheral alterations in cytokine and chemokine levels after antidepressant drug treatment for major depressive disorder: Systematic review and meta-analysis. Mol Neurobiol.  https://doi.org/10.1007/s12035-017-0632-1
  26. 26.
    Köhler CA, Freitas TH, Maes M, de Andrade NQ, Liu CS, Fernandes BS, Stubbs B, Solmi M et al (2017) Peripheral cytokine and chemokine alterations in depression: A meta-analysis of 82 studies. Acta Psychiatr Scand 135(5):373–387PubMedCrossRefGoogle Scholar
  27. 27.
    Modabbernia A, Taslimi S, Brietzke E, Ashrafi M (2013) Cytokine alterations in bipolar disorder: A meta-analysis of 30 studies. Biol Psychiatry 74(1):15–25PubMedCrossRefGoogle Scholar
  28. 28.
    Munkholm K, Braüner JV, Kessing LV, Vinberg M (2013) Cytokines in bipolar disorder vs. healthy control subjects: A systematic review and meta-analysis. J Psychiatr Res 47(9):1119–1133PubMedCrossRefGoogle Scholar
  29. 29.
    Maes M, Berk M, Goehler L, Song C, Anderson G, Gałecki P, Leonard B (2012) Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Med 10:66PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ward NS, Casserly B, Ayala A (2008) The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin Chest Med 29(4):617–625 viiiPubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Bone RC (1996) Sir Isaac Newton, sepsis, SIRS, and CARS. Crit Care Med 24(7):1125–1128PubMedCrossRefGoogle Scholar
  32. 32.
    Monneret G, Debard AL, Venet F, Bohe J, Hequet O, Bienvenu J, Lepape A (2003) Marked elevation of human circulating CD4+CD25+ regulatory T cells in sepsis-induced immunoparalysis. Crit Care Med 31(7):2068–2071PubMedCrossRefGoogle Scholar
  33. 33.
    Delano MJ, Scumpia PO, Weinstein JS, Coco D, Nagaraj S, Kelly-Scumpia KM, O'Malley KA, Wynn JL et al (2007) MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med 204(6):1463–1474PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE (1991) Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: An autoregulatory role of IL-10 produced by monocytes. J Exp Med 174(5):1209–1220PubMedCrossRefGoogle Scholar
  35. 35.
    Ayala A, Chaudry IH (1996) Immune dysfunction in murine polymicrobial sepsis: Mediators, macrophages, lymphocytes and apoptosis. Shock 6(Suppl 1):S27–S38PubMedCrossRefGoogle Scholar
  36. 36.
    Gentile LF, Cuenca AG, Efron PA, Ang D, Bihorac A, McKinley BA, Moldawer LL, Moore FA (2012) Persistent inflammation and immunosuppression: A common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg 72(6):1491–1501PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Vanzant EL, Lopez CM, Ozrazgat-Baslanti T, Ungaro R, Davis R, Cuenca AG, Gentile LF, Nacionales DC et al (2014) Persistent inflammation, immunosuppression, and catabolism syndrome after severe blunt trauma. J Trauma Acute Care Surg 76(1):21–29; discussion 29-30PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Rosenthal MD, Moore FA (2015) Persistent inflammatory, immunosuppressed, catabolic syndrome (PICS): A new phenotype of multiple organ failure. J Adv Nutr Hum Metab 1(1). e784.Google Scholar
  39. 39.
    Maes M, Vandewoude M, Scharpé S, De Clercq L, Stevens W, Lepoutre L, Schotte C (1991) Anthropometric and biochemical assessment of the nutritional state in depression: Evidence for lower visceral protein plasma levels in depression. J Affect Disord 23(1):25–33PubMedCrossRefGoogle Scholar
  40. 40.
    Maes M, Scharpé S, Van Grootel L, Uyttenbroeck W, Cooreman W, Cosyns P, Suy E (1992) Higher alpha 1-antitrypsin, haptoglobin, ceruloplasmin and lower retinol binding protein plasma levels during depression: Further evidence for the existence of an inflammatory response during that illness. J Affect Disord 24(3):183–192PubMedCrossRefGoogle Scholar
  41. 41.
    Maes M, Wauters A, Neels H, Scharpé S, Van Gastel A, D'Hondt P, Peeters D, Cosyns P et al (1995) Total serum protein and serum protein fractions in depression: Relationships to depressive symptoms and glucocorticoid activity. J Affect Disord 34(1):61–69PubMedCrossRefGoogle Scholar
  42. 42.
    Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep 6:13PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Maes M, Song C, Yirmiya R (2012) Targeting IL-1 in depression. Expert Opin Ther Targets 16(11):1097–1112PubMedCrossRefGoogle Scholar
  44. 44.
    Arend WP, Guthridge CJ (2000) Biological role of interleukin 1 receptor antagonist isoforms. Ann Rheum Dis 59(Suppl 1):i60–i64PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Anisman H, Ravindran AV, Griffiths J, Merali Z (1999) Interleukin-1 beta production in dysthymia before and after pharmacotherapy. Biol Psychiatry 46(12):1649–1655PubMedCrossRefGoogle Scholar
  46. 46.
    Piletz JE, Halaris A, Iqbal O, Hoppensteadt D, Fareed J, Zhu H, Sinacore J, Devane CL (2009) Pro-inflammatory biomakers in depression: Treatment with venlafaxine. World J Biol Psychiatry 10(4):313–323PubMedCrossRefGoogle Scholar
  47. 47.
    Diniz BS, Teixeira AL, Talib L, Gattaz WF, Forlenza OV (2010) Interleukin-1beta serum levels is increased in antidepressant-free elderly depressed patients. Am J Geriatr Psychiatry 18(2):172–176PubMedCrossRefGoogle Scholar
  48. 48.
    Corwin EJ, Johnston N, Pugh L (2008) Symptoms of postpartum depression associated with elevated levels of interleukin-1 beta during the first month postpartum. Biol Res Nurs 10(2):128–133PubMedCrossRefGoogle Scholar
  49. 49.
    Maes M, Mihaylova I, Kubera M, Ringel K (2012) Activation of cell-mediated immunity in depression: Association with inflammation, melancholia, clinical staging and the fatigue and somatic symptom cluster of depression. Prog Neuro-Psychopharmacol Biol Psychiatry 36(1):169–175CrossRefGoogle Scholar
  50. 50.
    Maes M, Vandoolaeghe E, Ranjan R, Bosmans E, Bergmans R, Desnyder R (1995) Increased serum interleukin-1-receptor-antagonist concentrations in major depression. J Affect Disord 36(1–2):29–36PubMedCrossRefGoogle Scholar
  51. 51.
    Maes M, Bosmans E, De Jongh R, Kenis G, Vandoolaeghe E, Neels H (1997) Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine 9(11):853–858PubMedCrossRefGoogle Scholar
  52. 52.
    Sowa-Kućma M, Styczeń K, Siwek M, Misztak P, Nowak RJ, Dudek D, Rybakowski JK, Nowak G, Maes M (2017) Lipid peroxidation and immune biomarkers are associated with major depression and its phenotypes, including treatment-resistant depression and melancholia. Neurotox res. Nov 4.  https://doi.org/10.1007/s12640-017-9835-5
  53. 53.
    Sowa-Kućma M, Styczeń K, Siwek M, Misztak P, Nowak RJ, Dudek D, Rybakowski JK, Nowak G et al (2018) Are there differences in lipid peroxidation and immune biomarkers between major depression and bipolar disorder: Effects of melancholia, atypical depression, severity of illness, episode number, suicidal ideation and prior suicide attempts. Prog Neuro-Psychopharmacol Biol Psychiatry 81:372–383CrossRefGoogle Scholar
  54. 54.
    Levine J, Barak Y, Chengappa KN, Rapoport A, Rebey M, Barak V (1999) Cerebrospinal cytokine levels in patients with acute depression. Neuropsychobiology 40(4):171–176PubMedCrossRefGoogle Scholar
  55. 55.
    Monfrim X, Gazal M, De Leon PB, Quevedo L, Souza LD, Jansen K, Oses JP, Pinheiro RT et al (2014) Immune dysfunction in bipolar disorder and suicide risk: Is there an association between peripheral corticotropin-releasing hormone and interleukin-1β? Bipolar Disord 16(7):741–747PubMedCrossRefGoogle Scholar
  56. 56.
    Tsai SY, Chung KH, Huang SH, Chen PH, Lee HC, Kuo CJ (2014) Persistent inflammation and its relationship to leptin and insulin in phases of bipolar disorder from acute depression to full remission. Bipolar Disord 16(8):800–808PubMedCrossRefGoogle Scholar
  57. 57.
    Pandey GN, Ren X, Rizavi HS, Zhang H (2015) Abnormal gene expression of proinflammatory cytokines and their receptors in the lymphocytes of patients with bipolar disorder. Bipolar Disord 17(6):636–644PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Milaneschi Y, Corsi AM, Penninx BW, Bandinelli S, Guralnik JM, Ferrucci L (2009) Interleukin-1 receptor antagonist and incident depressive symptoms over 6 years in older persons: The InCHIANTI study. Biol Psychiatry 65(11):973–978PubMedCrossRefGoogle Scholar
  59. 59.
    Idriss HT, Naismith JH (2000) TNF alpha and the TNF receptor superfamily: Structure-function relationship(s). Microsc Res Tech 50(3):184–195PubMedCrossRefGoogle Scholar
  60. 60.
    Pfeffer K (2003) Biological functions of tumor necrosis factor cytokines and their receptors. Cytokine Growth Factor Rev 14(3–4):185–191PubMedCrossRefGoogle Scholar
  61. 61.
    Popa C, Netea MG, van Riel PL, van der Meer JW, Stalenhoef AF (2007) The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res 48(4):751–762PubMedCrossRefGoogle Scholar
  62. 62.
    Olmos G, Lladó J (2014) Tumor necrosis factor alpha: A link between neuroinflammation and excitotoxicity. Mediat Inflamm 2014:861231CrossRefGoogle Scholar
  63. 63.
    Bouma MG, Buurman WA (1999) Assay of soluble tumor necrosis factor receptors. In: Evans TJ (ed) Methods in Molecular Medicine, Vol 36: Septic Shock. Humana Press Inc., Totowa, pp. 91–100Google Scholar
  64. 64.
    Huang ZS, Chiang BL, Hsu KL (2000) Serum level of soluble tumor necrosis factor receptor II (sTNF-R75) is apparently an index of overall monocyte-related infectious and inflammatory activity. Am J Med Sci 320(3):183–187PubMedCrossRefGoogle Scholar
  65. 65.
    Selinsky CL, Boroughs KL, Halsey WA Jr, Howell MD (1998) Multifaceted inhibition of anti-tumour immune mechanisms by soluble tumour necrosis factor receptor type I. Immunology 94(1):88–93PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Su X, Zhou T, Yang P, Edwards CK 3rd, Mountz JD (1998) Reduction of arthritis and pneumonitis in motheaten mice by soluble tumor necrosis factor receptor. Arthritis Rheum 41(1):139–149PubMedCrossRefGoogle Scholar
  67. 67.
    Banks WA, Plotkin SR, Kastin AJ (1995) Permeability of the blood-brain barrier to soluble cytokine receptors. Neuroimmunomodulation 2(3):161–165PubMedCrossRefGoogle Scholar
  68. 68.
    Lesslauer W, Tabuchi H, Gentz R, Brockhaus M, Schlaeger EJ, Grau G, Piguet PF, Pointaire P et al (1991) Recombinant soluble tumor necrosis factor receptor proteins protect mice from lipopolysaccharide-induced lethality. Eur J Immunol 21(11):2883–2886PubMedCrossRefGoogle Scholar
  69. 69.
    Barbosa IG, Huguet RB, Mendonça VA, Sousa LP, Neves FS, Bauer ME, Teixeira AL (2011) Increased plasma levels of soluble TNF receptor I in patients with bipolar disorder. Eur Arch Psychiatry Clin Neurosci 261(2):139–143PubMedCrossRefGoogle Scholar
  70. 70.
    O'Brien SM, Scully P, Scott LV, Dinan TG (2006) Cytokine profiles in bipolar affective disorder: Focus on acutely ill patients. J Affect Disord 90(2–3):263–267PubMedCrossRefGoogle Scholar
  71. 71.
    Ortiz-Domínguez A, Hernández ME, Berlanga C, Gutiérrez-Mora D, Moreno J, Heinze G, Pavón L (2007) Immune variations in bipolar disorder: Phasic differences. Bipolar Disord 9(6):596–602PubMedCrossRefGoogle Scholar
  72. 72.
    Brietzke E, Stertz L, Fernandes BS, Kauer-Sant'anna M, Mascarenhas M, Escosteguy Vargas A, Chies JA, Kapczinski F (2009) Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder. J Affect Disord 116(3):214–217PubMedCrossRefGoogle Scholar
  73. 73.
    Siwek M, Sowa-Kućma M, Styczeń K, Misztak P, Nowak RJ, Szewczyk B, Dudek D, Rybakowski JK et al (2017) Associations of serum cytokine receptor levels with melancholia, staging of illness, depressive and manic phases, and severity of depression in bipolar disorder. Mol Neurobiol 54(8):5883–5893PubMedCrossRefGoogle Scholar
  74. 74.
    Caruso C, Candore G, Cigna D, Colucci AT, Modica MA (1993) Biological significance of soluble IL-2 receptor. Mediat Inflamm 2(1):3–21CrossRefGoogle Scholar
  75. 75.
    Witkowska AM (2005) On the role of sIL-2R measurements in rheumatoid arthritis and cancers. Mediat Inflamm 2005(3):121–130CrossRefGoogle Scholar
  76. 76.
    Boyman O, Sprent J (2012) The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 12(3):180–190PubMedCrossRefGoogle Scholar
  77. 77.
    Malek TR, Castro I (2010) Interleukin-2 receptor signaling: At the interface between tolerance and immunity. Immunity 33(2):153–165PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Arenas-Ramirez N, Woytschak J, Boyman O (2015) Interleukin-2: Biology, design and application. Trends Immunol 36(12):763–777PubMedCrossRefGoogle Scholar
  79. 79.
    Dummer R, Posseckert G, Nestle F, Witzgall R, Burger M, Becker JC, Schäfer E, Wiede J et al (1992) Soluble interleukin-2 receptors inhibit interleukin 2-dependent proliferation and cytotoxicity: Explanation for diminished natural killer cell activity in cutaneous T-cell lymphomas in vivo? J Invest Dermatol 98(1):50–54PubMedCrossRefGoogle Scholar
  80. 80.
    Yang ZZ, Grote DM, Ziesmer SC, Manske MK, Witzig TE, Novak AJ, Ansell SM (2011) Soluble IL-2Rα facilitates IL-2-mediated immune responses and predicts reduced survival in follicular B-cell non-Hodgkin lymphoma. Blood 118:2809–2820PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Yang L, Ma QL, Yao W, Zhang Q, Chen HP, Wang GS, Wang CZ (2011) Relationship between the anti-inflammatory properties of salmeterol/fluticasone and the expression of CD4+CD25+Foxp3+ regulatory T cells in COPD. Respir Res 2:142CrossRefGoogle Scholar
  82. 82.
    Vanmaris R, Rijkers GT (2017) Biological role of the soluble interleukin-2 receptor in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 34:122–129Google Scholar
  83. 83.
    Maes M, Lambrechts J, Bosmans E, Jacobs J, Suy E, Vandervorst C, de Jonckheere C, Minner B et al (1992) Evidence for a systemic immune activation during depression: Results of leukocyte enumeration by flow cytometry in conjunction with monoclonal antibody staining. Psychol Med 22(1):45–53PubMedCrossRefGoogle Scholar
  84. 84.
    Maes M, Stevens WJ, Declerck LS, Bridts CH, Peeters D, Schotte C, Cosyns P (1993) Significantly increased expression of T-cell activation markers (interleukin-2 and HLA-DR) in depression: Further evidence for an inflammatory process during that illness. Prog Neuro-Psychopharmacol Biol Psychiatry 17(2):241–255CrossRefGoogle Scholar
  85. 85.
    Goldsmith DR, Rapaport MH, Miller BJ (2016) A meta-analysis of blood cytokine network alterations in psychiatric patients: Comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 21(12):1696–1709PubMedCrossRefGoogle Scholar
  86. 86.
    Maes M, Bosmans E, Suy E, Vandervorst C, Dejonckheere C, Raus J (1991) Antiphospholipid, antinuclear, Epstein-Barr and cytomegalovirus antibodies, and soluble interleukin-2 receptors in depressive patients. J Affect Disord 21(2):133–140PubMedCrossRefGoogle Scholar
  87. 87.
    Maes M, Bosmans E, Scharpé S, D'Hondt P, Desnyder R (1995) Plasma soluble interleukin-2-receptor in depression: Relationships to plasma neopterin and serum IL-2 concentrations and HPA-axis activity. Eur Psychiatry 10(8):397–403PubMedCrossRefGoogle Scholar
  88. 88.
    Maes M (1998) Interleukin-2 and schizophrenia. Psychiatry Res 77(1):63–64PubMedCrossRefGoogle Scholar
  89. 89.
    Maes M, Anderson G, Kubera M, Berk M (2014) Targeting classical IL-6 signalling or IL-6 trans-signalling in depression? Expert Opin Ther Targets 18(5):495–512PubMedCrossRefGoogle Scholar
  90. 90.
    Slyepchenko A, Maes M, Köhler CA, Anderson G, Quevedo J, Alves GS, Berk M, Fernandes BS et al (2016) T helper 17 cells may drive neuroprogression in major depressive disorder: Proposal of an integrative model. Neurosci Biobehav Rev 64:83–100PubMedCrossRefGoogle Scholar
  91. 91.
    Maes M, Scharpé S, Meltzer HY, Bosmans E, Suy E, Calabrese J, Cosyns P (1993) Relationships between interleukin-6 activity, acute phase proteins, and function of the hypothalamic-pituitary-adrenal axis in severe depression. Psychiatry Res 49(1):11–27PubMedCrossRefGoogle Scholar
  92. 92.
    Sluzewska A, Rybakowski J, Bosmans E, Sobieska M, Berghmans R, Maes M, Wiktorowicz K (1996) Indicators of immune activation in major depression. Psychiatry Res 64(3):161–167PubMedCrossRefGoogle Scholar
  93. 93.
    Maes M, Lin AH, Delmeire L, Van Gastel A, Kenis G, De Jongh R, Bosmans E (1999) Elevated serum interleukin-6 (IL-6) and IL-6 receptor concentrations in posttraumatic stress disorder following accidental man-made traumatic events. Biol Psychiatry 45(7):833–839PubMedCrossRefGoogle Scholar
  94. 94.
    Song C, Lin A, Bonaccorso S, Heide C, Verkerk R, Kenis G, Bosmans E, Scharpe S et al (1989) The inflammatory response system and the availability of plasma tryptophan in patients with primary sleep disorders and major depression. J Affect Disord 49(3):211–219CrossRefGoogle Scholar
  95. 95.
    Woodward EA, Prêle CM, Nicholson SE, Kolesnik TB, Hart PH (2010) The anti-inflammatory effects of interleukin-4 are not mediated by suppressor of cytokine signalling-1 (SOCS1). Immunology 131(1):118–127PubMedPubMedCentralGoogle Scholar
  96. 96.
    Opal SM, DePalo VA (2000) Anti-inflammatory cytokines. Chest 117(4):1162–1172PubMedCrossRefGoogle Scholar
  97. 97.
    Adeegbe DO, Nishikawa H (2013) Natural and induced T regulatory cells in cancer. Front Immunol 4:190PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Tran DQ (2012) TGF-β: The sword, the wand, and the shield of FOXP3(+) regulatory T cells. J Mol Cell Biol 4(1):29–37PubMedCrossRefGoogle Scholar
  99. 99.
    Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8(7):523–532PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Romagnani P, Annunziato F, Piccinni MP, Maggi E, Romagnani S (2000) Th1/Th2 cells, their associated molecules and role in pathophysiology. Eur Cytokine Netw 11(3):510–511PubMedGoogle Scholar
  101. 101.
    Chapoval S, Dasgupta P, Dorsey NJ, Keegan AD (2010) Regulation of the T helper cell type 2 (Th2)/T regulatory cell (Treg) balance by IL-4 and STAT6. J Leukoc Biol 87(6):1011–1018PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Lawrence DA (1996) Transforming growth factor-beta: A general review. Eur Cytokine Netw 7(3):363–374PubMedGoogle Scholar
  103. 103.
    Chaudhury A, Howe PH (2009) The tale of transforming growth factor-beta (TGFbeta) signaling: A soigné enigma. IUBMB Life 61(10):929–939PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765PubMedCrossRefGoogle Scholar
  105. 105.
    Mosser DM, Zhang X (2008) Interleukin-10: New perspectives on an old cytokine. Immunol Rev 226:205–218PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Bonaccorso S, Puzella A, Marino V, Pasquini M, Biondi M, Artini M, Almerighi C, Levrero M et al (2001) Immunotherapy with interferon-alpha in patients affected by chronic hepatitis C induces an intercorrelated stimulation of the cytokine network and an increase in depressive and anxiety symptoms. Psychiatry Res 105(1–2):45–55PubMedCrossRefGoogle Scholar
  107. 107.
    Capuron L, Ravaud A, Gualde N, Bosmans E, Dantzer R, Maes M, Neveu PJ (2001) Association between immune activation and early depressive symptoms in cancer patients treated with interleukin-2-based therapy. Psychoneuroendocrinology 26(8):797–808PubMedCrossRefGoogle Scholar
  108. 108.
    Kim YK, Jung HG, Myint AM, Kim H, Park SH (2007) Imbalance between pro-inflammatory and anti-inflammatory cytokines in bipolar disorder. J Affect Disord 104(1–3):91–95PubMedCrossRefGoogle Scholar
  109. 109.
    Fiedorowicz JG, Prossin AR, Johnson CP, Christensen GE, Magnotta VA, Wemmie JA (2015) Peripheral inflammation during abnormal mood states in bipolar I disorder. J Affect Disord 187:172–178PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Kunz M, Ceresér KM, Goi PD, Fries GR, Teixeira AL, Fernandes BS, Belmonte-de-Abreu PS, Kauer-Sant’Anna M et al (2011) Serum levels of IL-6, IL-10 and TNF-α in patients with bipolar disorder and schizophrenia: Differences in pro- and anti-inflammatory balance. Rev Bras Psiquiatr 33(3):268–274PubMedGoogle Scholar
  111. 111.
    Wiener CD, Moreira FP, Cardoso TA, Mondin TC, da Silva Magalhães PV, Kapczinski F, de Mattos Souza LD, da Silva RA et al (2017) Inflammatory cytokines and functional impairment in drug-free subjects with mood disorder. J Neuroimmunol 307:33–36PubMedCrossRefGoogle Scholar
  112. 112.
    Maes M, Song C, Lin AH, Bonaccorso S, Kenis G, De Jongh R, Bosmans E, Scharpé S (1999) Negative immunoregulatory effects of antidepressants: Inhibition of interferon-gamma and stimulation of interleukin-10 secretion. Neuropsychopharmacology 20(4):370–379PubMedCrossRefGoogle Scholar
  113. 113.
    Kubera M, Lin AH, Kenis G, Bosmans E, van Bockstaele D, Maes M (2001) Anti-inflammatory effects of antidepressants through suppression of the interferon-gamma/interleukin-10 production ratio. J Clin Psychopharmacol 21(2):199–206PubMedCrossRefGoogle Scholar
  114. 114.
    Grosse L, Hoogenboezem T, Ambrée O, Bellingrath S, Jörgens S, de Wit HJ, Wijkhuijs AM, Arolt V et al (2016) Deficiencies of the T and natural killer cell system in major depressive disorder: T regulatory cell defects are associated with inflammatory monocyte activation. Brain Behav Immun 54:38–44PubMedCrossRefGoogle Scholar
  115. 115.
    Grosse L, Carvalho LA, Birkenhager TK, Hoogendijk WJ, Kushner SA, Drexhage HA, Bergink V (2016) Circulating cytotoxic T cells and natural killer cells as potential predictors for antidepressant response in melancholic depression. Restoration of T regulatory cell populations after antidepressant therapy. Psychopharmacology 233(9):1679–1688PubMedCrossRefGoogle Scholar
  116. 116.
    Maes M (1993) A review on the acute phase response in major depression. Rev Neurosci 4(4):407–416PubMedCrossRefGoogle Scholar
  117. 117.
    Oliviero S, Morrone G, Cortese R (1987) The human haptoglobin gene: Transcriptional regulation during development and acute phase induction. EMBO J 6(7):1905–1912PubMedPubMedCentralGoogle Scholar
  118. 118.
    Arredouani MS, Kasran A, Vanoirbeek JA, Berger FG, Baumann H, Ceuppens JL (2005) Haptoglobin dampens endotoxin-induced inflammatory effects both in vitro and in vivo. Immunology 114(2):263–271PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Yang H, Wang H, Levine YA, Gunasekaran MK, Wang Y, Addorisio M, Zhu S, Li W et al (2016) Identification of CD163 as an anti-inflammatory receptor for HMGB1-haptoglobin complexes. JCI Insight 1(7):e85375PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): Nuclear weapon in the immune arsenal. Nat Rev Immunol 5(4):331–342PubMedCrossRefGoogle Scholar
  121. 121.
    Lin T, Sammy F, Yang H, Thundivalappil S, Hellman J, Tracey KJ, Warren HS (2012) Identification of hemopexin as an anti-inflammatory factor that inhibits synergy of hemoglobin with HMGB1 in sterile and infectious inflammation. J Immunol 189(4):2017–2022PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Smith A, McCulloh RJ (2015) Hemopexin and haptoglobin: Allies against heme toxicity from hemoglobin not contenders. Front Physiol 6:187PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Philippidis P, Mason JC, Evans BJ, Nadra I, Taylor KM, Haskard DO, Landis RC (2004) Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: Antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery. Circ Res 94(1):119–126PubMedCrossRefGoogle Scholar
  124. 124.
    Delanghe J, Langlois M, Duprez D, De Buyzere M, Clement D (1999) Haptoglobin polymorphism and peripheral arterial occlusive disease. Atherosclerosis 145(2):287–292PubMedCrossRefGoogle Scholar
  125. 125.
    Saeed SA, Ahmad N, Ahmed S (2007) Dual inhibition of cyclooxygenase and lipoxygenase by human haptoglobin: Its polymorphism and relation to hemoglobin binding. Biochem Biophys Res Commun 353(4):915–920PubMedCrossRefGoogle Scholar
  126. 126.
    de Kleijn DP, Smeets MB, Kemmeren PP, Lim SK, Van Middelaar BJ, Velema E, Schoneveld A, Pasterkamp G et al (2002) Acute-phase protein haptoglobin is a cell migration factor involved in arterial restructuring. FASEB J 16(9):1123–1125PubMedCrossRefGoogle Scholar
  127. 127.
    Quaye IK (2008) Haptoglobin, inflammation and disease. Trans R Soc Trop Med Hyg 102(8):735–742PubMedCrossRefGoogle Scholar
  128. 128.
    Maes M, Delanghe J, Scharpé S, Meltzer HY, Cosyns P, Suy E, Bosmans E (1994) Haptoglobin phenotypes and gene frequencies in unipolar major depression. Am J Psychiatry 151(1):112–116PubMedCrossRefGoogle Scholar
  129. 129.
    Guetta J, Strauss M, Levy NS, Fahoum L, Levy AP (2007) Haptoglobin genotype modulates the balance of Th1/Th2 cytokines produced by macrophages exposed to free hemoglobin. Atherosclerosis 191(1):48–53PubMedCrossRefGoogle Scholar
  130. 130.
    Maes M, Delange J, Ranjan R, Meltzer HY, Desnyder R, Cooremans W, Scharpé S (1997) Acute phase proteins in schizophrenia, mania and major depression: Modulation by psychotropic drugs. Psychiatry Res 66(1):1–11PubMedCrossRefGoogle Scholar
  131. 131.
    Rolla S, Ingoglia G, Bardina V, Silengo L, Altruda F, Novelli F, Tolosano E (2013) Acute-phase protein hemopexin is a negative regulator of Th17 response and experimental autoimmune encephalomyelitis development. J Immunol 191(11):5451–5459PubMedCrossRefGoogle Scholar
  132. 132.
    Hochepied T, Berger FG, Baumann H, Libert C (2003) Alpha(1)-acid glycoprotein: An acute phase protein with inflammatory and immunomodulating properties. Cytokine Growth Factor Rev 14(1):25–34PubMedCrossRefGoogle Scholar
  133. 133.
    Jonigk D, Al-Omari M, Maegel L, Müller M, Izykowski N, Hong J, Hong K, Kim SH et al (2013) Anti-inflammatory and immunomodulatory properties of α1-antitrypsin without inhibition of elastase. Proc Natl Acad Sci U S A 110(37):15007–15012PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Bergin DA, Hurley K, McElvaney NG, Reeves EP (2012) Alpha-1 antitrypsin: A potent anti-inflammatory and potential novel therapeutic agent. Arch Immunol Ther Exp 60(2):81–97CrossRefGoogle Scholar
  135. 135.
    Chapman AL, Mocatta TJ, Shiva S, Seidel A, Chen B, Khalilova I, Paumann-Page ME, Jameson GN et al (2013) Ceruloplasmin is an endogenous inhibitor of myeloperoxidase. J Biol Chem 288(9):6465–6477PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Bakhautdin B, Febbraio M, Goksoy E, de la Motte CA, Gulen MF, Childers EP, Hazen SL, Li X et al (2013) Protective role of macrophage-derived ceruloplasmin in inflammatory bowel disease. Gut 62(2):209–219PubMedCrossRefGoogle Scholar
  137. 137.
    Leonard B, Maes M (2012) Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 36(2):764–785PubMedCrossRefGoogle Scholar
  138. 138.
    Gomes C, Martinho FC, Barbosa DS, Antunes LS, Póvoa HCC, Baltus THL, Morelli NR, Vargas HO et al (2017) Increased root canal endotoxin levels are associated with chronic apical periodontitis, increased oxidative and Nitrosative stress, major depression, severity of depression, and a lowered quality of life. Mol Neurobiol.  https://doi.org/10.1007/s12035-017-0545-z
  139. 139.
    Maes M, Leonard BE, Myint AM, Kubera M, Verkerk R (2011) The new '5-HT' hypothesis of depression: Cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuro-Psychopharmacol Biol Psychiatry 35(3):702–721CrossRefGoogle Scholar
  140. 140.
    Roomruangwong C, Barbosa DS, de Farias CC, Matsumoto AK, Baltus THL, Morelli NR, Kanchanatawan B, Duleu S et al (2017) Natural regulatory IgM-mediated autoimmune responses directed against malondialdehyde regulate oxidative and nitrosative pathways and coupled with IgM responses to nitroso-adducts attenuate depressive and physiosomatic symptoms at the end of term pregnancy. Psychiatry Clin Neurosci.  https://doi.org/10.1111/pcn.12625
  141. 141.
    Maes M, Mihaylova I, Kubera M, Leunis JC, Geffard M (2011) IgM-mediated autoimmune responses directed against multiple neoepitopes in depression: New pathways that underpin the inflammatory and neuroprogressive pathophysiology. J Affect Disord 135(1–3):414–418PubMedCrossRefGoogle Scholar
  142. 142.
    Antelman SM, Levine J, Gershon S (2000) Time-dependent sensitization: The odyssey of a scientific heresy from the laboratory to the door of the clinic. Mol Psychiatry 5(4):350–356PubMedCrossRefGoogle Scholar
  143. 143.
    Bell IR, Schwartz GE, Amend D, Peterson JM, Stini WA (1994) Sensitization to early life stress and response to chemical odors in older adults. Biol Psychiatry 35(11):857–863PubMedCrossRefGoogle Scholar
  144. 144.
    Maes M, Ombelet W, De Jongh R, Kenis G, Bosmans E (2001) The inflammatory response following delivery is amplified in women who previously suffered from major depression, suggesting that major depression is accompanied by a sensitization of the inflammatory response system. J Affect Disord 63(1–3):85–92PubMedCrossRefGoogle Scholar
  145. 145.
    Maes M, Ringel K, Kubera M, Berk M, Rybakowski J (2012) Increased autoimmune activity against 5-HT: A key component of depression that is associated with inflammation and activation of cell-mediated immunity, and with severity and staging of depression. J Affect Disord 136(3):386–392PubMedCrossRefGoogle Scholar
  146. 146.
    Celik C, Erdem M, Cayci T, Ozdemir B, Ozgur Akgul E, Kurt YG, Yaman H, Isintas M et al (2010) The association between serum levels of neopterin and number of depressive episodes of major depression. Prog Neuro-Psychopharmacol Biol Psychiatry 34(2):372–375CrossRefGoogle Scholar
  147. 147.
    Maes M, Meltzer HY, Stevens W, Calabrese J, Cosyns P (1994) Natural killer cell activity in major depression: Relation to circulating natural killer cells, cellular indices of the immune response, and depressive phenomenology. Prog Neuro-Psychopharmacol Biol Psychiatry 18(4):717–730CrossRefGoogle Scholar
  148. 148.
    Xia Z, DePierre JW, Nässberger L (1996) Tricyclic antidepressants inhibit IL-6, IL-1 beta and TNF-alpha release in human blood monocytes and IL-2 and interferon-gamma in T cells. Immunopharmacology 34(1):27–37PubMedCrossRefGoogle Scholar
  149. 149.
    Xia Z, Depierre JW, Nässberger L (1996) The tricyclic antidepressants clomipramine and citalopram induce apoptosis in cultured human lymphocytes. J Pharm Pharmacol 48(1):115–116PubMedCrossRefGoogle Scholar
  150. 150.
    Qiu W, Wu M, Liu S, Chen B, Pan C, Yang M, Wang KJ (2017) Suppressive immunoregulatory effects of three antidepressants via inhibition of the nuclear factor-κB activation assessed using primary macrophages of carp (Cyprinus carpio). Toxicol Appl Pharmacol 322:1–8PubMedCrossRefGoogle Scholar
  151. 151.
    Maes M (2011) Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Prog Neuro-Psychopharmacol Biol Psychiatry 35(3):664–675CrossRefGoogle Scholar
  152. 152.
    Kubera M, Basta-Kaim A, Wróbel A, Maes M, Dudek D (2004) Increased mitogen-induced lymphocyte proliferation in treatment resistant depression: A preliminary study. Neuro Endocrinol Lett 25(3):207–210PubMedGoogle Scholar
  153. 153.
    Kubera M, Van Bockstaele D, Maes M (1999) Leukocyte subsets in treatment-resistant major depression. Pol J Pharmacol 51(6):547–549PubMedGoogle Scholar
  154. 154.
    Morris G, Anderson G, Galecki P, Berk M, Maes M (2013) A narrative review on the similarities and dissimilarities between myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and sickness behavior. BMC Med 11:64PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Maes M, Song C, Lin A, DeJong R, Van Gastel A, Kenis G, Bosmans E, DeMeester I, Neels H, Janca A, Scharpe S, Smith RS (1998) Immune and clinical correlates of psychological stress-induced production of interferon-γ and interleukin-10 in humans. Cytokines, Stress and Immunity; Editors: Plotnikoff NP, Faith RE, Murgo AJ, Good RA, pp 39–50.  https://doi.org/10.1201/9781420048193.ch3
  156. 156.
    Guimarães PM, Scavuzzi BM, Stadtlober NP, Franchi Santos LFDR, Lozovoy MAB, Iriyoda TMV, Costa NT, Reiche EMV et al (2017) Cytokines in systemic lupus erythematosus: Far beyond Th1/Th2 dualism lupus: Cytokine profiles. Immunol Cell Biol 95(9):824–831PubMedCrossRefGoogle Scholar
  157. 157.
    Moylan S, Berk M, Dean OM, Samuni Y, Williams LJ, O'Neil A, Hayley AC, Pasco JA et al (2014) Oxidative & nitrosative stress in depression: Why so much stress? Neurosci Biobehav Rev 45:46–62PubMedCrossRefGoogle Scholar
  158. 158.
    Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuro-Psychopharmacol Biol Psychiatry 35(3):676–692CrossRefGoogle Scholar
  159. 159.
    Liu T, Zhong S, Liao X, Chen J, He T, Lai S, Jia Y (2015) A meta-analysis of oxidative stress markers in depression. PLoS One 10(10):e0138904PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Morris G, Walder K, Carvalho AF, Tye SJ, Lucas K, Berk M, Maes M (2018) The role of hypernitrosylation in the pathogenesis and pathophysiology of neuroprogressive diseases. Neurosci Biobehav Rev 84:453–469PubMedCrossRefGoogle Scholar
  161. 161.
    Morris G, Berk M, Klein H, Walder K, Galecki P, Maes M (2017) Nitrosative stress, Hypernitrosylation, and autoimmune responses to Nitrosylated proteins: New pathways in Neuroprogressive disorders including depression and chronic fatigue syndrome. Mol Neurobiol 54(6):4271–4291PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Psychiatry, Faculty of MedicineChulalongkorn UniversityBangkokThailand
  2. 2.Department of PsychiatryMedical University of PlovdivPlovdivBulgaria
  3. 3.IMPACT Strategic Research Centre, School of MedicineDeakin UniversityGeelongAustralia
  4. 4.Department of Psychiatry, Faculty of MedicineUniversity of TorontoTorontoCanada
  5. 5.Centre for Addiction and Mental Health (CAMH)TorontoCanada

Personalised recommendations